Skip to main content

Advertisement

Log in

Engineering solid lipid nanoparticles for improved drug delivery: promises and challenges of translational research

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Nanotechnology is expected to revolutionize existing drug delivery. Many nanostructured systems have been employed for drug delivery and yielded some promising results. Solid lipid nanoparticles (SLN) have been looked at as a potential drug carrier system since last two decades. SLN do not show biotoxicity as they are prepared from physiological lipids. SLN are especially useful in drug delivery as they can enhance the absorption of drugs and improves the bioavailability of both hydrophilic and lipophilic drugs. This paper presents an overview about the various classes of SLN, comparison with available drug carrier systems, different ways of production, in vivo fate and biodistribution and various applications of SLN. Besides, aspects of stability, hurdles and strategies for SLN manufacturing with potential of clinical translation are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig.6
Fig.7

Similar content being viewed by others

Abbreviations

NDDS:

Novel drug delivery system

SLN:

Solid lipid nanoparticles

DDS:

Drug delivery system

NLC:

Nanostructured lipid carriers

SCF:

Supercritical fluid technology

SFEE:

Supercritical fluid extraction of emulsions

GAMA:

Gas-assisted melting atomisation

O/W:

Oil-in-water

CM:

Mixing chamber

TEM:

Transmission electron microscopy

SEM:

Scanning electron microscopy

PCM:

Phase contrast optical microscopy

AFM:

Atomic force microscopy

PCS:

Photon correlation spectroscopy

SAX:

Synchrotron radiation X-ray

GPC:

Gel permeation chromatography

SWCNT:

Single-walled carbon nanotubes

TMS:

Thermosensitive magneto liposomes

MTX:

Methotrexate

MBC:

Metastatic breast cancer

PNET:

Phase nanoparticle engineering technology

cSLN:

Cationic solid lipid nanoparticles

PTX:

Paclitaxel

ADA:

Adenosine deaminase

DNA:

Deoxyribonucleic acid

References

  1. Muhlen A, Schwarz C, Mehnert W. Solid lipid nanoparticles for controlled drug delivery—drug release and release mechanism. Eur J Pharm Biopharm. 1998;45:149–55.

    Article  PubMed  Google Scholar 

  2. Muhlen A, Schwarz C, Wolfgang M. Solid Lipid nanoparticles for controlled drug delivery—drug release and release mechanism. Eur J Pharm Biopharm. 1998;45(2):149–55.

    Article  PubMed  Google Scholar 

  3. Muhlen Z, Mehnert W. Drug release and release mechanism of prednisolone loaded solid lipid nanoparticles. Pharmazie. 1998;53:552–5.

    Google Scholar 

  4. Almeida A, Souto E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Del Rev. 2007;59(6):478–90.

    Article  CAS  Google Scholar 

  5. Andrea M, Calderoni S, Gian P, Lorenzo P, Maria R, Alessandro M. Solid lipid nanoparticles for brain tumors therapy: state of the art and novel challenges. Progress in Brain Res. 2009;180:193–223.

    Article  Google Scholar 

  6. Diepold R, Kreuter J, Guggenbuhl P. Distribution of poly-hexyl-2-cyano-[3–14C] acrylate nanoparticles in healthy and chronically inflamed rabbit eyes. Int J Pharm. 1989;54:149–53.

    Article  CAS  Google Scholar 

  7. Chakraborty S, Shukla D, Mishra B, Singh S. Lipid—an emerging platform for oral delivery of drugs with poor bioavailability. Eur J Pharm Biopharm. 2009;73(1):1–15.

    Article  PubMed  CAS  Google Scholar 

  8. Wolfgang M, Mader K. Solid lipid nanoparticles production, characterization and applications. Adv Drug Del Rev. 2001;47(2–3):165–96.

    Google Scholar 

  9. Marcelo B, Carmen V, Eneida P, Dick H. Solid lipid nanoparticles for gene delivery into prostate cancer cells. Drug Discov Today. 2010;15(23–24):1110.

    Google Scholar 

  10. Fang J, Chia L, Chi L. Lipid nanoparticles as vehicles for topical psoralen delivery solid lipid nanoparticles versus nanostructured lipid carriers. Eur J Pharm Biopharm. 2008;70(2):633–40.

    Article  PubMed  CAS  Google Scholar 

  11. Mudshinge R, Deore A, Patil S, Bhalgat C. Nanoparticles emerging carriers for drug delivery. Saudi Pharm J. 2011;19(3):129–41.

    Article  CAS  Google Scholar 

  12. Runge S, Mechnert W, Muller R. Solid lipid nanoparticles, a novel formulation for the oral administration of drugs. Eur J Pharm Sci. 1996;4(1):S132.

    Article  Google Scholar 

  13. Garti N. Effects of surfactants on crystallization and polymorphic transformation of fats and fatty acids. In: Garti N, Sato K, editors. Crystallization and polymorphism of fats and fatty acids. New York: Marcel Dekker; 1988. p. 267–304.

    Google Scholar 

  14. Yung C, Hung C. Entrapment and release of saquinavir using novel cationic solid lipid nanoparticles. Int J Pharm. 2009;365(1–2):206–13.

    Google Scholar 

  15. Alex M, Chacko A, Jose A, Souto E. Lopinavir loaded solid lipid nanoparticles for intestinal lymphatic targeting. Eur J Pharm Sci. 2011;42(1–2):11–8.

    Article  Google Scholar 

  16. Uner M. Preparation, characterization and physico-chemical properties of solid lipid nanoparticles and nanostructured lipid carriers: their benefits as colloidal drug carrier systems. Pharmazie. 2006;61:375–86.

    PubMed  CAS  Google Scholar 

  17. Kerstin T, Carsten K, Sameti M, Carsten O, Muller. Transfection with different colloidal systems: comparison of solid lipid nanoparticles and liposomes. J Control Rel. 2004;97(2):321–32.

    Article  Google Scholar 

  18. Balaji S, Balaji P. Nanotechnology and cancer—an overview. Int J Pharm Biopharm. 2010;1(4):186–201.

    CAS  Google Scholar 

  19. Jiesheng Y, Wang Q, Xuefeng Z, Zhang N. Injectable actarit-loaded solid lipid nanoparticles as passive targeting therapeutic agents for rheumatoid arthritis. Int J Pharm. 2008;352(1–2):273–9.

    Google Scholar 

  20. Muller R, Runge S. Solid lipid nanoparticles for controlled drug delivery. In: Benita S, editor. Submicron emulsions in drug targeting and delivery. Amsterdam: Harwood Academic; 1998. p. 219–34.

    Google Scholar 

  21. Couvreur P, Kante B, Grislain L. Toxicity of poly alkyl cyano acrylate nanoparticles II: doxorubicin-loaded nanoparticles. J Pharm Sci. 1982;71:790–2.

    Article  PubMed  CAS  Google Scholar 

  22. Kreuter J. Nanopaticles based drug delivery systems. J Control Rel. 1991;16:169–76.

    Article  CAS  Google Scholar 

  23. Roberta C, Rosa G, Patrizia C, Burgalassi S, Fabrizio M. Solid lipid nanoparticles as ocular delivery system for tobramycin. Int J Pharm. 2002;238(1–2):241–5.

    Google Scholar 

  24. Alvarez R, Naik A, Kalia Y, Guy R, Fessi H. Skin penetration and distribution of polymeric nanoparticles. J Control Rel. 2004;99(1):53–62.

    Article  Google Scholar 

  25. Magenheim B, Levy M, Benita S. A new in vitro technique for evaluation of drug release profile from colloidal carriers—ultrafiltration technique at low pressure. Int J Pharm. 1993;94:115–23.

    Article  CAS  Google Scholar 

  26. Benita S, Friedmann D, Weinstock M. Physiostigmine emulsions: a new injectable controlled release delivery system. Int J Pharm. 1986;30:47–55.

    Article  CAS  Google Scholar 

  27. Benita S, Friedmann D, Weinstock M. Pharmacological evaluation of an injectable prolonged release emulsion of physiostigmine in rabbits. J Pharm Pharmacol. 1986;38:653–8.

    Article  PubMed  CAS  Google Scholar 

  28. Eldem T, Speiser P, Hincal A. Optimization of spray-dried and congealed lipid microparticles and characterization of their surface morphology by scanning electron microscopy. Pharm Res. 1991;8:47–54.

    Article  PubMed  CAS  Google Scholar 

  29. Souto E, Muller R. The use of SLN and NLC as topical particulate carriers for imidazole antifungal agents. Pharmazie. 2006;61:431–7.

    PubMed  CAS  Google Scholar 

  30. Lippacher A, Muller R, Mader K. Liquid and semisolid SLN™ dispersions for topical application: rheological characterization. Eur J Pharm Biopharm. 2004;58(3):561–7.

    Article  PubMed  CAS  Google Scholar 

  31. Lippacher A, Muller R, Mader K. Preparation of semisolid drug carriers for topical application based on solid lipid nanoparticles. Int J Pharm. 2001;214(1–2):9–12.

    Article  PubMed  CAS  Google Scholar 

  32. Jahnke S. The theory of high pressure homogenization. In: Muller RH, Benita S, Bohm B, editors. Emulsions and nanosuspensions for the formulation of poorly soluble drugs. Stuttgart: Medpharm; 1998. p. 177–200.

    Google Scholar 

  33. Gasco M. Method for producing solid lipid microspheres having a narrow size distribution. US: United States patent; 1993. 188837.

    Google Scholar 

  34. Serpe L, Canaparo R, Daperno M, Sostegni R, Gasco M, Zara G. Solid lipid nanoparticles as anti-inflammatory drug delivery system in a human inflammatory bowel disease whole-blood model. Eur J Pharm Sci. 2010;39(5):428–36.

    Article  PubMed  CAS  Google Scholar 

  35. Rodriguez A, Solinis M, Gascon A, Pedraz J. Short- and long-term stability study of lyophilized solid lipid nanoparticles for gene therapy. Eur J Pharm Biopharm. 2009;71(2):181–9.

    Article  CAS  Google Scholar 

  36. Kirsten W, Siekmann B. Investigation of the gel formation of phospholipid-stabilized solid lipid nanoparticles. Int J Pharm. 1997;151(1):35–45.

    Article  Google Scholar 

  37. Wook K, Chun M, Subedi R, Sang A, Yoon J, Choi H. Doxorubicin-loaded solid lipid nanoparticles to overcome multidrug resistance in cancer therapy. Nanomedicine Nanotechnol Biol M. 2010;6(2):210–3.

    Article  Google Scholar 

  38. Chattopadhyay P, Shekunov BY, Yim D, et al. Production of solid lipid nanoparticles suspensions using supercritical fluid extraction of emulsions (SFEE) for pulmonary delivery using the AERx system. Adv Drug Deliv Rev. 2007;6:444–53.

    Article  Google Scholar 

  39. Sellers S, Clark G, Sievers R, Carpenter J. Dry powders of stable protein formulations from aqueous solutions prepared using supercritical CO2-assisted erosolization. J Pharm Sci. 2001;90:785–97.

    Article  PubMed  CAS  Google Scholar 

  40. Jovanovic N, Bouchard A, Hofland G, Witkamp G, et al. Stabilization of proteins in dry powder formulations using supercritical fluid technology. Pharm Res. 2004;21:1955–69.

    Article  PubMed  CAS  Google Scholar 

  41. Rodrigues M, Peiriço N, Matos M, Lobato, et al. Microcomposites theophylline/hydrogenated palm oil from a PGSS process for controlled drug delivery systems. J Supercrit Fluids. 2004;29:175–84.

    Article  CAS  Google Scholar 

  42. Jung J, Perrut M. Particle design using supercritical fluids: literature and patent survey. J Supercrit Fluids. 2001;20:179–219.

    Article  CAS  Google Scholar 

  43. Salmaso S, Elvassore N, Bertucco A, et al. Production of solid lipid submicron particles for protein delivery using a novel supercritical gas-assisted melting atomization process. J Pharm Sci. 2009;98:640–9.

    Article  PubMed  CAS  Google Scholar 

  44. Sebti T, Amighi K. Preparation and in vitro evaluation of lipidic carriers and fillers for inhalation. Eur J Pharm Biopharm. 2006;63:51–8.

    Article  PubMed  CAS  Google Scholar 

  45. Seetapan N, Bejrapha P, Srinuanchai W. Rheological and morphological characterizations on physical stability of gamma-oryzanol-loaded solid lipid nanoparticles. Micron. 2010;41(1):51–8.

    Article  PubMed  CAS  Google Scholar 

  46. Borgstrom B. Importance of phospholipids, pancreatic phospholipase A2, and fatty acid for the digestion of dietary fat: in vitro experiments with the porcine enzymes. Gastroenterol. 1980;78:954–62.

    CAS  Google Scholar 

  47. Libo W, Zhang J, Watanabe W. Physical and chemical stability of drug nanoparticles. Adv Drug Del Rev. 2011;63(6):456–69.

    Article  Google Scholar 

  48. Muller R, Runge S, Ravelli V, Thunemann A, Mehnert W, Souto E. Cyclosporine-loaded solid lipid nanoparticles (SLN®): drug–lipid physicochemical interactions and characterization of drug incorporation. Eur J Pharm Biopharm. 2008;68(3):535–44.

    Article  PubMed  CAS  Google Scholar 

  49. Muhlen A, Muhlen E, Niehus H, Mehnert W. Characterisation of solid lipid nanoparticles by atomic force microscopy. Eur J Pharm Sci. 1994;2(1–2):178.

    Article  Google Scholar 

  50. Muller R, Freitas C, Muhlen A, Mehnert W. Solid lipid nanoparticles for controlled drug delivery. Eur J Pharm Sci. 1996;4(1):S75.

    Article  Google Scholar 

  51. Scheffel U, Rhodes B, Natajaran T, Wagner H. Albumin microspheres for study of the reticuloendothelial system. J Nucl Med. 1970;13:498–503.

    Google Scholar 

  52. Indu PK, Rohit B, Swati B, Vandita K. Potential of solid lipid nanoparticles in brain targeting. J Control Rel. 2008;127:97–109.

    Article  Google Scholar 

  53. Volkhard J, Mader K, Gohla S. Solid lipid nanoparticles (SLN™) based on binary mixtures of liquid and solid lipid: a 1H-NMR study. Int J Pharm. 2000;205(1–2):15–21.

    Google Scholar 

  54. Acosta E. Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Current Opin Colloid Interface Sci. 2009;14(1):3–15.

    Article  CAS  Google Scholar 

  55. Ahlin P, Kristl J, Kobar S. Optimization of procedure parameters and physical stability of solid lipid nanoparticles in dispersion. Acta Pharm. 1998;48:257–67.

    Google Scholar 

  56. Ahmadian S, Fakhree A. Lipid based nanoparticles containing saturated solution of NaCl, may be used to targeted eradication of cancerous cells. Biosci Hypotheses. 2009;2(3):172–3.

    Article  Google Scholar 

  57. Qingzhi L, Aihua Y, Yanwei X, Houli L, Zhimei S, Fengliang C, Guangxi Z. Development and evaluation of penciclovir-loaded solid lipid nanoparticles for topical delivery. Int J Pharm. 2009;372(1–2):191–8.

    Google Scholar 

  58. Radomska A. Stability of lipid excipients in solid lipid nanoparticles. Adv Drug Del Rev. 2007;59(6):411–8.

    Article  Google Scholar 

  59. Scholer N, Hahn H, Muller R, Liesenfeld O. Effect of lipid matrix and size of solid lipid nanoparticles (SLN) on the viability and cytokine production of macrophages. Int J Pharm. 2002;231(2):167–76.

    Article  PubMed  CAS  Google Scholar 

  60. Xiong S, Yang H, Yin X, Zhao R. Mitoxantrone-loaded BSA nanospheres and chitosan nanospheres for local injection against breast cancer and its lymph node metastases. II: Tissue distribution and pharmacodynamics. Int J Pharm. 2006;307(2):175–81.

    Article  PubMed  Google Scholar 

  61. Low S, Henne A, Doorneweerd D. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res. 2008;41:120–9.

    Article  PubMed  CAS  Google Scholar 

  62. Liu Z, Chen K, Davis C, Sherlock S, Cao Q, Chen Y, Dai J. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res. 2008;68:6652–60.

    Article  PubMed  CAS  Google Scholar 

  63. Chien J, Illi A, Ko H, Korn M, Fong L, Chen M. A Phase I study of a 2-day lapatinib hemosensitization pulse preceding nanoparticles albumin-bound paclitaxel for advanced solid malignancies. Clin Cancer Res. 2009;15:5569–75.

    Article  PubMed  CAS  Google Scholar 

  64. Zhu L, Huo L, Wang L, Tong X, Xiao Y. Targeted delivery of methotrexate to skeletal muscular tissue by thermosensitive magnetoliposomes. Int J Pharmacol. 2009;370:136–43.

    Article  CAS  Google Scholar 

  65. Conlin K, Seidman D, Bach A. Phase II trial of weekly nanoparticles albumin-bound paclitaxel with carboplatin and trastuzumab as first-line therapy for women with HER2-overexpressing metastatic breast cancer. Clin Breast Cancer. 2010;10:281–7.

    Article  PubMed  CAS  Google Scholar 

  66. Keon K, Myung C, Subedi R, Sang A, Jung Y, Hoo C. Doxorubicin-loaded solid lipid nanoparticles to overcome multidrug resistance in cancer therapy. Nanomedicine: Nanotechnol Biol Med. 2010;6(2):210–3.

    Article  Google Scholar 

  67. Eyles J, Carpenter Z, Alpar H, Williamson E. Immunological aspects of polymer microsphere vaccine delivery systems. J Drug Target. 2003;11:509–14.

    Article  PubMed  CAS  Google Scholar 

  68. Tamber H, Johansen P, Merkle H, Gander B. Formulation aspects of biodegradable polymeric microspheres for antigen delivery. Adv Drug Deliv Rev. 2005;57:357–76.

    Article  PubMed  CAS  Google Scholar 

  69. Storni T, Kündig T, Senti G, Johansen P. Immunity in response to particulate antigen-delivery systems. Adv Drug Deliv Rev. 2005;57:333–55.

    Article  PubMed  CAS  Google Scholar 

  70. Weiss J, Decker E, McClements D, et al. Solid lipid nanoparticles as delivery systems for bioactive food components. Food Biophys. 2008;3:146–54.

    Article  Google Scholar 

  71. Mei Z, Li X, Wu Q, et al. The research on the anti-inflammatory activity and hepatotoxicity of triptolide-loaded solid lipid nanoparticle. Pharm Res. 2005;51:345–51.

    Article  CAS  Google Scholar 

  72. Rodriguez A, Delgado D, Solinis M, et al. Lipid nanoparticles as vehicles for macromolecules: nucleic acids and peptides. Recent Pat Drug Deliv Formul. 2011;5:214–26.

    Article  Google Scholar 

  73. Elsabahy M, Nazarali A, Foldvari M. Non-viral nucleic acid delivery: key challenges and future directions. Curr Drug Deliv. 2011;8:235–44.

    PubMed  CAS  Google Scholar 

  74. Wagner V, Dullaart A, Bock A, Zweck A. The emerging nanomedicine landscape. Nature Biotech. 2006;24(10):1211–7.

    Article  CAS  Google Scholar 

  75. Silva A, Gonzalez E, Garcia M, Egea M, Fonseca J, Silva R. Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): high pressure homogenization versus ultrasound. Colloids Surfaces B: Biointerfaces. 2011;86(1):158–65.

    Article  CAS  Google Scholar 

  76. Silva A, Santos D, Ferreira D, Souto E. Characterization of ibuprofen loaded solid lipid nanoparticles dispersed in semi-solid Carbopol gels. J Biotech. 2007;131(2):S67–8.

    Article  Google Scholar 

  77. Subedi R, Kang K, Choi H. Preparation and characterization of solid lipid nanoparticles loaded with doxorubicin. Eur J Pharm Sci. 2009;37(3–4):508–13.

    Article  PubMed  CAS  Google Scholar 

  78. Liu F, Park Y, Zhang Y, Conwell C, Liu Y, Bathula R, Huang L. Targeted cancer therapy with novel high drug-loading nanocrystals. J Pharm Sci. 2010;99:3542–51.

    Article  PubMed  CAS  Google Scholar 

  79. Khdair A, Chen D, Patil Y, Dou P, Shekhar P, Panyam J. Nano particle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance. J Control Rel. 2010;141:137–44.

    Article  CAS  Google Scholar 

  80. Yu Y, Kim E, Park D, Shim G, Lee S, Kim Y, Kim C, Oh Y. Cationic solid lipid nanoparticles for co-delivery of paclitaxel and siRNA. Eur J Pharm Biopharm. 2012;80(2):268–73.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Kumar Mishra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, D.K., Dhote, V., Bhatnagar, P. et al. Engineering solid lipid nanoparticles for improved drug delivery: promises and challenges of translational research. Drug Deliv. and Transl. Res. 2, 238–253 (2012). https://doi.org/10.1007/s13346-012-0088-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-012-0088-9

Keywords

Navigation