Skip to main content

Advertisement

Log in

Nanostructured reverse hexagonal liquid crystals sustain plasma concentrations for a poorly water-soluble drug after oral administration

  • Research Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Reverse hexagonal (H2) liquid crystals formed from selachyl alcohol were demonstrated to sustain the absorption of the poorly water-soluble drug cinnarizine (CZ) after oral administration to rats. When CZ was administered as a bolus lipid solution in selachyl alcohol, the T max was observed to be 23.5 ± 5.9 h, significantly longer than the control suspension (1 h). Administration of selachyl alcohol as dispersed nanoparticles (hexosomes) also resulted in a sustained plasma profile, with drug concentrations maintained from 20 to 40 ng/mL over the first 24 h after administration. Sustained absorption of CZ from the selachyl alcohol hexosomes led to a significant enhancement (p < 0.05) in oral bioavailability (F% = 17%) compared to the control CZ suspension (9%). Analysis of selachyl alcohol hexosomes using small-angle x-ray scattering indicated that neither the presence of CZ (7 mg/g) nor simulated intestinal fluid altered the H2 nanostructure. Selachyl alcohol is not susceptible to digestion. Prolonged absorption from the selachyl alcohol-based H2 systems was attributed to the non-digestible nature of the lipid, similar to non-digestible phytantriol cubic (V2) systems previously reported. Furthermore, the likely presence of non-sink conditions in the gastric compartment provides a drug reservoir requiring gastric emptying to stimulate drug release from the formulation. This study highlights the potential use of non-digestible liquid crystalline systems generally and nanostructured liquid crystalline particles in particular as novel sustained oral drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siekmann B, Bunjes H, Koch M, Westesen K. Preparation and structural investigations of colloidal dispersions prepared from cubic phase monoglyceride/water phases. Int J Pharm. 2002;244(1–2):33–43.

    Article  PubMed  CAS  Google Scholar 

  2. Esposito E, Cortesi R, Drechsler M, Paccamiccio L, Mariani P, Contado C, et al. Cubosome dispersions as delivery systems for percutaneous administration of indomethacin. Pharm Res. 2005;22:2163–73.

    Article  PubMed  CAS  Google Scholar 

  3. Dong Y-D, Larson I, Hanley T, Boyd BJ. Bulk and dispersed aqueous phase behaviour of phytantriol: effect of vitamin E acetate and F127 polymer on liquid crystal nanostructure. Langmuir. 2006;22:9512–8.

    Article  PubMed  CAS  Google Scholar 

  4. Gustafsson J, Nylander T, Almgren M, Ljusberg-Wahren H. Phase behavior and aggregate structure in aqueous mixtures of sodium cholate and glycerol monooleate. J Colloid Interface Sci. 1999;211:326–35.

    Article  PubMed  CAS  Google Scholar 

  5. Andersson S, Jacob M, Ladin S, Larsson K. Structure of the cubosome—a closed lipid bilayer aggregate. Z Kristallogr. 1995;210:315–8.

    Article  CAS  Google Scholar 

  6. Landh T. Phase behavior in the system pine needle oil monoglycerides-poloxamer 407-water at 20°C. J Phys Chem. 1994;98(34):8453–67.

    Article  CAS  Google Scholar 

  7. Gustafsson J, Ljusberg-Wahren H, Almgren M, Larsson K. Submicron particles of reversed lipid phases in water stabilized by a nonionic amphiphilic polymer. Langmuir. 1997;13:6964–71.

    Article  CAS  Google Scholar 

  8. Shah JC, Sadhale Y, Chilukuri DM. Cubic phase gels as drug delivery systems. Adv Drug Delivery Rev. 2001;47(2–3):229–50.

    Article  CAS  Google Scholar 

  9. Burrows R, Collett JH, Attwood D. The release of drugs from monoglyceride-water liquid crystalline phases. Int J Pharm. 1994;111(3):283–93.

    Article  CAS  Google Scholar 

  10. Drummond CJ, Fong C. Surfactant self-assembly objects as novel drug delivery vehicles. Curr Opin Colloid Interface Sci. 2000;4:449–56.

    Article  Google Scholar 

  11. Leesajakul W, Nakano M, Taniguchi A, Handa T. Interaction of cubosomes with plasma components resulting in the destabilization of cubosomes in plasma. Colloids Surf B Biointerfaces. 2004;34(4):253–8.

    Article  PubMed  CAS  Google Scholar 

  12. Engstrom S, Ericsson B, Landh T, editors. A cubosome formulation for intravenous administration of somatostatin. Proceedings of the International Symposium on Controlled Release of Bioactive Materials; 1996.

  13. Boyd B, Whittaker DV, Khoo S-M, Davey G. Hexosomes formed from glycerate surfactants- formulation as a colloidal carrier for irinotecan. Int J Pharm. 2006;318(318):154–62.

    Article  PubMed  CAS  Google Scholar 

  14. Lopes L, Ferriera D, Paula D, Garcia M, Thomazini J, Fantini M, et al. Reverse hexagonal phase nanodispersion of monoolein and oleic acid for topical delivery of peptides: in vitro and in vivo penetration of cyclospoin A. Pharm Res. 2006;23:1332–42.

    Article  PubMed  CAS  Google Scholar 

  15. Libster D, Aserin A, Wachel E, Shoham G, Garti N. A HII liquid crystal-based delivery system for cyclosporin A: physical characterization. J Colloid Interface Sci. 2007;308:514–24.

    Article  PubMed  CAS  Google Scholar 

  16. Swarnakar N, Jain V, Dubey V, Mishra D, Jain N. Enhanced oromucosal delivery of progesterone via hexosomes. Pharm Res. 2007;24:2223–30.

    Article  PubMed  CAS  Google Scholar 

  17. Esposito E, Carrotta V, Scabbia A, Trombelli L, D’Antona P, Menegatti E, et al. Comparative analysis of tetracycline-containing dental gels: poloxamer- and monoglyceride-based formulations. Int J Pharm. 1996;142:9–23.

    Article  CAS  Google Scholar 

  18. Norling T, Lading P, Engstrom S, Larsson K, Krog N, Nissen S. Formulation of a drug delivery system based on a mixture of monoglycerides and triglycerides for use in the treatment of periodontal disease. J Clin Periodontol. 1992;19:687–92.

    Article  PubMed  CAS  Google Scholar 

  19. Shah M, Paradkar A. Cubic liquid crystalline monooleate matrices for oral delivery of enzyme. Int J Pharm. 2005;294:161–71.

    Article  PubMed  CAS  Google Scholar 

  20. Wyatt DM, Dorshel D. A cubic-phase delivery system composed of glyceryl monooleate and water for sustained release of water-soluble drugs. Pharm Tech. 1992;16(10):116–30.

    CAS  Google Scholar 

  21. Sallam A-S, Khalil E, Ibrahim H, Freij I. Formulation of oral dosage form utilizing the properties of cubic liquid crystalline phases of glyceryl monooleate. Eur J Pharm Biopharm. 2002;53(3):343–52.

    Article  PubMed  CAS  Google Scholar 

  22. Boyd BJ, Khoo S-M, Whittaker DV, Davey G, Porter CJH. A lipid-based liquid crystalline matrix that provides sustained release and enhanced oral bioavailability for a model poorly water soluble drug in rats. Int J Pharm. 2007;340:52–60.

    Article  PubMed  CAS  Google Scholar 

  23. Fong C, Krodkiewska I, Wells D, Boyd BJ, Booth J, Bhargava S, et al. Submicron dispersions of hexosomes based in novel glycerate surfactants. Aust J Chem. 2005;58:683–7.

    Article  CAS  Google Scholar 

  24. Nguyen T, Hanley T, Porter C, Larson I, Boyd B. Phytantriol and glyceryl monooleate cubic liquid crystalline phases as sustained-release oral drug delivery systems for poorly water soluble drugs II. In-vivo evaluation. J Pharm Pharmacol. 2010;62:856–65.

    PubMed  CAS  Google Scholar 

  25. Nguyen T, Hanley T, Porter C, Boyd B. Nanostructured liquid crystalline particles provide long duration sustained-release effect for a poorly water soluble drug after oral administration. J Control Release. 2011;153(2):180–6.

    Article  PubMed  CAS  Google Scholar 

  26. Barauskas J, Johnsson M, Nylander T, Tiberg F. Hexagonal liquid crystalline nanoparticles in aqueous mixtures of glyceryl monooleyl ether and pluronic F127. Chem Lett. 2006;35(8):830–1.

    Article  CAS  Google Scholar 

  27. Kossena GA, Charman WN, Boyd BJ, Dunstan DE, Porter CJH. Probing drug solubilization patterns in the gastrointestinal tract after administration of lipid-based delivery systems: a phase diagram approach. J Pharm Sci. 2004;93(2):332–48.

    Article  PubMed  CAS  Google Scholar 

  28. Nguyen T, Hanley T, Porter C, Larson I, Boyd B. Phytantriol and glyceryl monooleate cubic liquid crystalline phases as sustained-release oral drug delivery systems for poorly water soluble drugs I. Phase behaviour in physiologically-relevant media. J Pharm Pharmacol. 2010;62:844–55.

    PubMed  CAS  Google Scholar 

  29. Tilley A, Dong Y-D, Amenitsch H, Rappolt M, Boyd BJ. Transfer of lipid and phase reorganisation in self-assembled liquid crystal nanostructured particles based on phytantriol. Phys Chem Chem Phys. 2011;13(8):3026–32.

    Article  PubMed  CAS  Google Scholar 

  30. Hyde S, editor. Identification of lyotropic liquid crystalline mesophases. Handbook of Applied Surface and Colloid Chemistry. Chichester, UK John Wiley & Sons; 2002.

  31. Kaukonen AM, Boyd BJ, Porter CJH, Charman WN. Drug solubilization behaviour during in vitro digestion of suspension formulations of poorly water- soluble drugs in triglyceride lipids. Pharm Res. 2004;21(2):254–60.

    Article  PubMed  CAS  Google Scholar 

  32. Kaukonen AM, Boyd BJ, Porter CJH, Charman WN. Drug solubilization behaviour during in vitro digestion of simple triglyceride lipid solution formulations. Pharm Res. 2004;21(2):245–53.

    Article  PubMed  CAS  Google Scholar 

  33. Sek L, Porter CJH, Kaukonen A, Charman WN. Evaluation of the in-vitro digestion profiles of long and medium chain glycerides and the phase behaviour of their lipolytic products. J Pharm Pharmacol. 2002;54:29–41.

    Article  PubMed  CAS  Google Scholar 

  34. Krise JP, Charman WN, Charman SA, Stella VJ. A novel prodrug approach for tertiary amines. 3. In vivo evaluation of two N-phosphonooxymethyl prodrugs in rats and dogs. J Pharm Sci. 1999;88(9):928–32.

    Article  PubMed  CAS  Google Scholar 

  35. Kossena GA, Charman WN, Boyd BJ, Porter CJH. A novel cubic phase of medium chain lipid origin for the delivery of poorly water soluble drugs. J Control Release. 2004;99(2):217–29.

    Article  PubMed  CAS  Google Scholar 

  36. Ogiso T, Kasutani M, Tanaka H, Iwaki M, Tanino T. Pharmacokinetics of epinastine and a possible mechanism for the double peaks in oral plasma concentration profiles. Biol Pharm Bull. 2001;24(7):790–4.

    Article  PubMed  CAS  Google Scholar 

  37. Takamatsu N, Welage L, Hayashi Y, Yamamoto R, Barnett JL, Shah VP, et al. Variability in cimetidine absorption and plasma double peaks following oral administration in the fasted state in humans: correlation with antral gastric motility. Eur J Pharm Biopharm. 2002;53:37–47.

    Article  PubMed  CAS  Google Scholar 

  38. Ezzet F, Krishna G, Wexler D, Statkevich P, Kosoglou T, Batra V. A population pharmacokinetic model that describes multiple peaks due to enterohepatic recirculation of ezetimibe. Clin Ther. 2001;23(6):871–85.

    Article  PubMed  CAS  Google Scholar 

  39. Plusquellec Y, Campistron G, Staveris S, Barre J, Jung L, Tillement J, et al. A double-peak phenomenon in the pharmacokinetics of veralipride after oral administration: a double site model for drug absorption. J Pharmacokinet Biopharm. 1987;15(3):225–38.

    Article  PubMed  CAS  Google Scholar 

  40. Lennernas H, Ragardh C. Evidence for an interaction between the β-blocker pafenolol and bile salts in the intestinal lumen of the rat leading to dose-dependent oral absorption and double peaks in the plasma concentration-time profile. Pharm Res. 1993;10(6):879–83.

    Article  PubMed  CAS  Google Scholar 

  41. Carey MC, Small D. The characteristics of mixed micellar solution with particular reference to bile. Am J Med. 1970;49:590–608.

    Article  PubMed  CAS  Google Scholar 

  42. Hofmann A. The behavior and solubility of monoglycerides in dilute, micellar bile-salt solution. Biochemica et Biophysica Acta. 1963;70:306–16.

    Article  CAS  Google Scholar 

  43. Bergstrom S, Blomstrand R. The intestinal absorption and metabolism of chimyl alcohol in the rat. Acta Physiologica Scandinavia. 1957;38(2):166–72.

    Article  Google Scholar 

  44. Blomstrand R, Ahrens E. Absorption of chimyl alcohol in man. Proc Soc Exp Biol Med. 1959;100:802–5.

    PubMed  CAS  Google Scholar 

  45. Lee J, Young S, Kellaway IW. Water quantitatively induces the mucoadhesion of liquid crystalline phases of glyceryl monooleate. J Pharm Pharmacol. 2001;53:629–36.

    Article  PubMed  CAS  Google Scholar 

  46. Nielsen LS, Schubert L, Hansen J. Bioadhesive drug delivery systems I. Characterisation of mucoadhesive properties of systems based on glyceryl mono-oleate and glyceryl monolinoleate. Eur J Pharm Sci. 1998;6(3):231–9.

    Article  PubMed  CAS  Google Scholar 

  47. Geraghty P, Attwood D, Collett J, Sharma H, Dandiker Y. An investigation of the parameters influencing the bioadhesive properties of Myverol 18-99/water gels. Biomaterials. 1997;18:63–7.

    Article  PubMed  CAS  Google Scholar 

  48. Gruber P, Rubinstein A, Li V, Bass P, Robinson J. Gastric emptying of nondigestible solids in the fasted dog. J Pharm Sci. 1987;76:117–22.

    Article  PubMed  CAS  Google Scholar 

  49. Boyd BJ. Characterisation of the drug release from cubosomes using the pressure ultrafiltration method. Int J Pharm. 2003;260(2):239–47.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Nikko Chemicals for the kind donation of selachyl alcohol to these studies. The authors also thank the Australian Institute of Nuclear Science and Engineering for funding of the SAXS studies (grant AINGRA06018). This research was undertaken on the small- and wide-angle scattering beamline at the Australian Synchrotron, VIC, Australia. T-H N. thanks Monash Research Graduate School for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben J. Boyd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, TH., Hanley, T., Porter, C.J.H. et al. Nanostructured reverse hexagonal liquid crystals sustain plasma concentrations for a poorly water-soluble drug after oral administration. Drug Deliv. and Transl. Res. 1, 429–438 (2011). https://doi.org/10.1007/s13346-011-0045-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-011-0045-z

Keywords

Navigation