Skip to main content

Advertisement

Log in

Comparative oral bioavailability advantage from curcumin formulations

  • Research Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The aim of the present study was to study the oral bioavailability of seven different formulations of curcumin (CRM). CRM formulations viz. aqueous suspension, micronized suspension, nanosuspension, amorphous solid dispersion, hydroxypropyl-β-cyclodextrin (HP-β-CD) inclusion complex, combination with piperine, and spray-dried CRM–milk composite were compared for oral bioavailability in male Sprague–Dawley rats at a CRM dose of 250 mg/kg body weight using a validated high-performance liquid chromatography method. Aqueous suspension provided a C max and AUC(0 − t) of 28.9 ng/ml and 26.9 ng h/ml, respectively. In comparison, statistically significant increase in the oral bioavailability was obtained with the nanosuspension, HP-β-CD inclusion complex, and amorphous solid dispersion with 251%, 567%, and 446% increase in terms of AUC(0 − t) and 405%, 415%, and 270% in terms of C max. However, no significant increase in AUC(0 − t) and C max was observed with piperine and micronized suspension. The milk composite reduced the oral bioavailability of CRM (10% and 37% in terms of AUC(0 − t) and C max). A statistically significant increase in the T max was observed with piperine and in HP-β-CD complex, while the T max was reduced for nanosuspension. The results provide interesting insights into the role of solubility enhancement and metabolism inhibition, for improving the oral bioavailability of CRM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as “Curecumin”: from kitchen to clinic. Biochem Pharmacol. 2008;75(4):787–809.

    Article  PubMed  CAS  Google Scholar 

  2. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4(6):807–18.

    Article  PubMed  CAS  Google Scholar 

  3. Sharma RA, Gescher AJ, Steward WP. Curcumin: the story so far. Eur J Cancer. 2005;41(13):1955–68.

    Article  PubMed  CAS  Google Scholar 

  4. Yang KY, Lin LC, Tseng TY, Wang SC, Tsai TH. Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC-MS/MS. J Chromatogr B. 2007;853(1–2):183–9.

    Article  CAS  Google Scholar 

  5. Wahlang B, Pawar YB, Bansal AK. Identification of permeability-related hurdles in oral delivery of curcumin using the Caco-2 cell model. Eur J Pharm Biopharm. 2011;77(2):275–82.

    Article  PubMed  CAS  Google Scholar 

  6. Setthacheewakul S, Mahattanadul S, Padoongsombat N, Pichayakorn W, Wiwattanapatapee R. Development and evaluation of self-microemulsifying liquid and pellet formulations of curcumin, and absorption studies in rats. Eur J Pharm Biopharm. 2010;76(1):475–85.

    Article  PubMed  CAS  Google Scholar 

  7. Wu X, Xu J, Huang X, Wen C. Self-microemulsifying drug delivery system improves curcumin dissolution and bioavailability. Drug Dev Ind Pharm. 2011;37(1):15–23.

    Article  PubMed  CAS  Google Scholar 

  8. Gupta NK, Dixit VK. Bioavailability enhancement of curcumin by complexation with phosphatidyl choline. J Pharm Sci. 2011;100(5):1987–95.

    Article  PubMed  CAS  Google Scholar 

  9. Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK. Curcumin–phospholipid complex: preparation, therapeutic evaluation and pharmacokinetic study in rats. Int J Pharm. 2007;330(1–2):155–63.

    Article  PubMed  CAS  Google Scholar 

  10. Kakkar V, Singh S, Singla D, Kaur IP. Exploring solid lipid nanoparticles to enhance the oral bioavailability of curcumin. Mol Nutr Food Res. 2011;55(3):495–503.

    Article  PubMed  CAS  Google Scholar 

  11. Tiyaboonchai W, Tungpradit W, Plianbangchang P. Formulation and characterization of curcuminoids loaded solid lipid nanoparticles. Int J Pharm. 2007;337(1–2):299–306.

    Article  PubMed  CAS  Google Scholar 

  12. Onoue S, Takahashi H, Kawabata Y, Seto Y, Hatanaka J, Timmermann B, et al. Formulation design and photochemical studies on nanocrystal solid dispersion of curcumin with improved oral bioavailability. J Pharm Sci. 2010;99(4):1871–81.

    PubMed  CAS  Google Scholar 

  13. Yadav VR, Prasad S, Kannappan R, Ravindran J, Chaturvedi MM, Vaahtera L, et al. Cyclodextrin-complexed curcumin exhibits anti-inflammatory and antiproliferative activities superior to those of curcumin through higher cellular uptake. Biochem Pharmacol. 2010;80(7):1021–32.

    Article  PubMed  CAS  Google Scholar 

  14. Shaikh J, Ankola DD, Beniwal V, Singh D, Kumar MNV. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci. 2009;37(3–4):223–30.

    Article  PubMed  CAS  Google Scholar 

  15. Yallapu MM, Gupta BK, Jaggi M, Chauhan SC. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci. 2010;351(1):19–29.

    Article  PubMed  CAS  Google Scholar 

  16. Ganta S, Amiji M. Co-administration of paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells. Mol Pharm. 2009;6(3):928–39.

    Article  PubMed  CAS  Google Scholar 

  17. Antony B, Merina B, Iyer VS, Judy N, Lennertz K, Joyal S. A pilot cross-over study to evaluate human oral bioavailability of BCM-95® CG (Biocurcumax™), a novel bioenhanced preparation of curcumin. Ind J Pharm Sci. 2008;70(4):445–9.

    Article  CAS  Google Scholar 

  18. Paradkar A, Ambike AA, Jadhav BK, Mahadik KR. Characterization of curcumin-PVP solid dispersion obtained by spray drying. Int J Pharm. 2004;271(1–2):281–6.

    Article  PubMed  CAS  Google Scholar 

  19. Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 1998;64(4):353–6.

    Article  PubMed  CAS  Google Scholar 

  20. Bansal SS, Vadhanam MV, Gupta RC. Development and in vitro-in vivo evaluation of polymeric implants for continuous systemic delivery of Curcumin. Pharm Res. 2011;28(5):1121–30.

    Article  PubMed  CAS  Google Scholar 

  21. Gao Y, Li Z, Sun M, Li H, Guo C, Cui J, et al. Preparation, characterization, pharmacokinetics, and tissue distribution of curcumin nanosuspension with TPGS as stabilizer. Drug Dev Ind Pharm. 2010;36(10):1225–34.

    Article  PubMed  CAS  Google Scholar 

  22. Bisht S, Feldmann G, Soni S, Ravi R, Karikar C, Maitra A, et al. Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): a novel strategy for human cancer therapy. J Nanobiotechnol. 2007;5(3):3.

    Article  Google Scholar 

  23. Ma Z, Shayeganpour A, Brocks DR, Lavasanifar A, Samuel J. High performance liquid chromatography analysis of curcumin in rat plasma: application to pharmacokinetics of polymeric micellar formulation of curcumin. Biomed Chromatogr. 2007;21(5):546–52.

    Article  PubMed  CAS  Google Scholar 

  24. Li L, Braiteh FS, Kurzrock R. Liposome-encapsulated curcumin: in vitro and in vivo effects on proliferation, apoptosis, signaling, and angiogenesis. Cancer. 2005;104(6):1322–31.

    Article  PubMed  CAS  Google Scholar 

  25. Kumar V, Lewis SA, Mutalik S, Shenoy DB, Venkatesh, Udupa N. Biodegradable microspheres of curcumin for treatment of inflammation. Indian J Physiol Pharmacol. 2002;46(2):209–17.

    PubMed  CAS  Google Scholar 

  26. Sou K, Inenaga S, Takeoka S, Tsuchida E. Loading of curcumin into macrophages using lipid-based nanoparticles. Int J Pharm. 2008;352(1–2):287–93.

    Article  PubMed  CAS  Google Scholar 

  27. Wang X, Jiang Y, Wang YW, Huang MT, Ho CT, Huang Q. Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions. Food Chem. 2008;108(2):419–24.

    Article  CAS  Google Scholar 

  28. Kasim NA, Whitehouse M, Ramachandran C, Bermejo M, Lennernas H, Hussain AS, et al. Molecular properties of WHO essential drugs and provisional biopharmaceutical classification. Mol Pharm. 2004;1(1):85–96.

    Article  PubMed  CAS  Google Scholar 

  29. U.S. Department of Health and Human Services Food and Drug Administration. Bioanalytical Method Validation. Guidance for Industry. Rockville: U.S. Department of Health and Human Services Food and Drug Administration. 2001. Available from: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070107.pdf

  30. Sharma RA, Steward WP, Gescher AJ. Pharmacokinetics and pharmacodynamics of curcumin. In: Aggarwal BB, Surh Y-J, Shishodia S, editors. The molecular targets and therapeutic uses of curcumin in health and disease. 2007. p. 453–70.

    Chapter  Google Scholar 

  31. Jinno J, Kamada N, Miyake M, Yamada K, Mukai T, Odomi M, et al. Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug, cilostazol, in beagle dogs. J Control Release. 2006;111(1–2):56–64.

    Article  PubMed  CAS  Google Scholar 

  32. Rasenack N, Hartenhauer H, Muller BW. Microcrystals for dissolution rate enhancement of poorly water-soluble drugs. Int J Pharm. 2003;254(2):137–45.

    Article  PubMed  CAS  Google Scholar 

  33. Mosharraf M, Nystrom C. Apparent solubility of drugs in partially crystalline systems. Drug Dev Ind Pharm. 2003;29(6):603–22.

    Article  PubMed  CAS  Google Scholar 

  34. Van Eerdenbrugh B, Vermant J, Martens JA, Froyen L, Van Humbeeck J, Van den Mooter G, et al. Solubility increases associated with crystalline drug nanoparticles: methodologies and significance. Mol Pharm. 2010;7(5):1858–70.

    Article  Google Scholar 

  35. Pan MH, Huang TM, Lin JK. Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab Dispos. 1999;27(4):486–94.

    PubMed  CAS  Google Scholar 

  36. Xu DH, Wang S, Jing JIN, Mei XT, Xu SB. Dissolution and absorption researches of curcumin in solid dispersions with the polymers PVP. Asian J Pharmacodyn Pharmacokinet. 2006;6(4):343–9.

    Google Scholar 

  37. Tonnesen HH, Masson M, Loftsson T. Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability. Int J Pharm. 2002;244(1–2):127–35.

    Article  PubMed  CAS  Google Scholar 

  38. Brewster ME, Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev. 2007;59(7):645–66.

    Article  PubMed  CAS  Google Scholar 

  39. Shishu, Maheshwari M. Comparative bioavailability of curcumin, turmeric and Biocurcumax™ in traditional vehicles using non-everted rat intestinal sac model. J Funct Foods. 2010;2(1):60–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Yogesh Bapurao Pawar would like to acknowledge Department of Science and Technology (DST), India for providing Senior Research Fellowship, and Sarsvatkumar Babulal Patel would like to acknowledge DST, India for providing Young Scientist Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Kumar Bansal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munjal, B., Pawar, Y.B., Patel, S.B. et al. Comparative oral bioavailability advantage from curcumin formulations. Drug Deliv. and Transl. Res. 1, 322–331 (2011). https://doi.org/10.1007/s13346-011-0033-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-011-0033-3

Keywords

Navigation