Skip to main content
Log in

Pharmacokinetics and Pharmacodynamics of Promising Arginase Inhibitors

  • Review Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Up-regulation of arginase activity in several chronic disease conditions, including cancer and hypertension, may suggest new targets for treatment. Recently, the number of new arginase inhibitors with promising therapeutic effects for asthma, cancer, hypertension, diabetes mellitus, and erectile dysfunction has shown a remarkable increase. Arginase inhibitors may be chemical substances, such as boron-based amino acid derivatives, α-difluoromethylornithine (DMFO), and Nω-hydroxy-nor-l-arginine (nor-NOHA) or, of plant origin such as sauchinone, salvianolic acid B (SAB), piceatannol-3-O-β-d-glucopyranoside (PG) and obacunone. Despite their promising therapeutic potential, little is known about pharmacokinetics and pharmacodynamics of some of these agents. Several studies were conducted in different animal species and in vitro systems and reported significant differences in pharmacokinetics and pharmacodynamics of arginase inhibitors. Therefore, extra caution should be considered before extrapolating these studies to human. Physicochemical and pharmacokinetic profiles of some effective arginase inhibitors make it challenging to formulate stable and effective formulation. In this article, existing literature on the pharmacokinetics and pharmacodynamics of arginase inhibitors were reviewed and compared together with emphasis on possible drug interactions and solutions to overcome pharmacokinetics challenges and shortage of arginase inhibitors in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Osowska S, Moinard C, Neveux N, Loi C, Cynober L. Citrulline increases arginine pools and restores nitrogen balance after massive intestinal resection. Gut. 2004;53(12):1781–6. doi:10.1136/gut.2004.042317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Durante W, Johnson FK, Johnson RA. Arginase: a critical regulator of nitric oxide synthesis and vascular function. Clin Exp Pharmacol Physiol. 2007;34(9):906–11. doi:10.1111/j.1440-1681.2007.04638.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Romero MJ, Platt DH, Tawfik HE, Labazi M, El-Remessy AB, Bartoli M, et al. Diabetes-induced coronary vascular dysfunction involves increased arginase activity. Circ Res. 2008;102(1):95–102. doi:10.1161/CIRCRESAHA.107.155028.

    Article  CAS  PubMed  Google Scholar 

  4. Woo A, Min B, Ryoo S. Piceatannol-3′-O-beta-d-glucopyranoside as an active component of rhubarb activates endothelial nitric oxide synthase through inhibition of arginase activity. Exp Mol Med. 2010;42(7):524–32. doi:10.3858/emm.2010.42.7.053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Que LG, George SE, Gotoh T, Mori M, Huang YC. Effects of arginase isoforms on NO production by nNOS. Nitric Oxide. 2002;6(1):1–8. doi:10.1006/niox.2001.0355.

    Article  CAS  PubMed  Google Scholar 

  6. Wu G, Morris SM Jr. Arginine metabolism: nitric oxide and beyond. Biochem J. 1998;336(Pt 1):1–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tenu JP, Lepoivre M, Moali C, Brollo M, Mansuy D, Boucher JL. Effects of the new arginase inhibitor N(omega)-hydroxy-nor-l-arginine on NO synthase activity in murine macrophages. Nitric Oxide. 1999;3(6):427–38. doi:10.1006/niox.1999.0255.

    Article  CAS  PubMed  Google Scholar 

  8. Yang Z, Ming XF. Endothelial arginase: a new target in atherosclerosis. Curr Hypertens Rep. 2006;8(1):54–9.

    Article  PubMed  Google Scholar 

  9. Kossel A, Dakin HD. Über die Arginase. Hoppe-Seyler´s Zeitschrift für physiologische Chemie. 1904:321.

  10. Jenkinson CP, Grody WW, Cederbaum SD. Comparative properties of arginases. Comp Biochem Physiol B Biochem Mol Biol. 1996;114(1):107–32.

    Article  CAS  PubMed  Google Scholar 

  11. Munder M. Arginase: an emerging key player in the mammalian immune system. Br J Pharmacol. 2009;158(3):638–51. doi:10.1111/j.1476-5381.2009.00291.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gotoh T, Sonoki T, Nagasaki A, Terada K, Takiguchi M, Mori M. Molecular cloning of cDNA for nonhepatic mitochondrial arginase (arginase II) and comparison of its induction with nitric oxide synthase in a murine macrophage-like cell line. FEBS Lett. 1996;395(2–3):119–22.

    Article  CAS  PubMed  Google Scholar 

  13. Cama E, Colleluori DM, Emig FA, Shin H, Kim SW, Kim NN, et al. Human arginase II: crystal structure and physiological role in male and female sexual arousal. Biochemistry. 2003;42(28):8445–51. doi:10.1021/bi034340j.

    Article  CAS  PubMed  Google Scholar 

  14. Girard-Thernier C, Pham TN, Demougeot C. The promise of plant-derived substances as inhibitors of arginase. Mini Rev Med Chem. 2015;15(10):798–808.

    Article  CAS  PubMed  Google Scholar 

  15. Morris SM Jr. Regulation of enzymes of the urea cycle and arginine metabolism. Annu Rev Nutr. 2002;22:87–105. doi:10.1146/annurev.nutr.22.110801.140547.

    Article  CAS  PubMed  Google Scholar 

  16. Herzfeld A, Raper SM. The heterogeneity of arginases in rat tissues. Biochem J. 1976;153(2):469–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Miyanaka K, Gotoh T, Nagasaki A, Takeya M, Ozaki M, Iwase K, et al. Immunohistochemical localization of arginase II and other enzymes of arginine metabolism in rat kidney and liver. Histochem J. 1998;30(10):741–51.

    Article  CAS  PubMed  Google Scholar 

  18. Pokrovskiy MV, Korokin MV, Tsepeleva SA, Pokrovskaya TG, Gureev VV, Konovalova EA, et al. Arginase inhibitor in the pharmacological correction of endothelial dysfunction. Int J Hypertens. 2011;2011:515047. doi:10.4061/2011/515047.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Kanyo ZF, Chen CY, Daghigh F, Ash DE, Christianson DW. Crystallization and oligomeric structure of rat liver arginase. J Mol Biol. 1992;224(4):1175–7.

    Article  CAS  PubMed  Google Scholar 

  20. Bagnost T, Berthelot A, Bouhaddi M, Laurant P, Andre C, Guillaume Y, et al. Treatment with the arginase inhibitor N(omega)-hydroxy-nor-l-arginine improves vascular function and lowers blood pressure in adult spontaneously hypertensive rat. J Hypertens. 2008;26(6):1110–8. doi:10.1097/HJH.0b013e3282fcc357.

    Article  CAS  PubMed  Google Scholar 

  21. Reid KM, Tsung A, Kaizu T, Jeyabalan G, Ikeda A, Shao L, et al. Liver I/R injury is improved by the arginase inhibitor, N(omega)-hydroxy-nor-l-arginine (nor-NOHA). Am J Physiol Gastrointest Liver Physiol. 2007;292(2):G512–7. doi:10.1152/ajpgi.00227.2006.

    Article  CAS  PubMed  Google Scholar 

  22. Jeyabalan G, Klune JR, Nakao A, Martik N, Wu G, Tsung A, et al. Arginase blockade protects against hepatic damage in warm ischemia-reperfusion. Nitric Oxide. 2008;19(1):29–35. doi:10.1016/j.niox.2008.04.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jung C, Gonon AT, Sjoquist PO, Lundberg JO, Pernow J. Arginase inhibition mediates cardioprotection during ischaemia-reperfusion. Cardiovasc Res. 2010;85(1):147–54. doi:10.1093/cvr/cvp303.

    Article  CAS  PubMed  Google Scholar 

  24. Prati C, Berthelot A, Wendling D, Demougeot C. Endothelial dysfunction in rat adjuvant-induced arthritis: up-regulation of the vascular arginase pathway. Arthritis Rheum. 2011;63(8):2309–17. doi:10.1002/art.30391.

    Article  CAS  PubMed  Google Scholar 

  25. Carneiro FS, Giachini FR, Lima VV, Carneiro ZN, Leite R, Inscho EW, et al. Adenosine actions are preserved in corpus cavernosum from obese and type II diabetic db/db mouse. J Sex Med. 2008;5(5):1156–66. doi:10.1111/j.1743-6109.2007.00752.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xie D, Odronic SI, Wu F, Pippen AM, Donatucci CF, Annex BH. A mouse model of hypercholesterolemia-induced erectile dysfunction. J Sex Med. 2007;4(4 Pt 1):898–907. doi:10.1111/j.1743-6109.2007.00518.x.

    Article  CAS  PubMed  Google Scholar 

  27. Bivalacqua TJ, Burnett AL, Hellstrom WJ, Champion HC. Overexpression of arginase in the aged mouse penis impairs erectile function and decreases eNOS activity: influence of in vivo gene therapy of anti-arginase. Am J Physiol Heart Circ Physiol. 2007;292(3):H1340–51. doi:10.1152/ajpheart.00121.2005.

    Article  CAS  PubMed  Google Scholar 

  28. Bivalacqua TJ, Hellstrom WJ, Kadowitz PJ, Champion HC. Increased expression of arginase II in human diabetic corpus cavernosum: in diabetic-associated erectile dysfunction. Biochem Biophys Res Commun. 2001;283(4):923–7. doi:10.1006/bbrc.2001.4874.

    Article  CAS  PubMed  Google Scholar 

  29. Ming XF, Barandier C, Viswambharan H, Kwak BR, Mach F, Mazzolai L, et al. Thrombin stimulates human endothelial arginase enzymatic activity via RhoA/ROCK pathway: implications for atherosclerotic endothelial dysfunction. Circulation. 2004;110(24):3708–14. doi:10.1161/01.CIR.0000142867.26182.32.

    Article  CAS  PubMed  Google Scholar 

  30. Chu Y, XiangLi X, Niu H, Wang H, Jia P, Gong W, et al. Arginase inhibitor attenuates pulmonary artery hypertension induced by hypoxia. Mol Cell Biochem. 2016;412(1–2):91–9. doi:10.1007/s11010-015-2611-z.

    Article  CAS  PubMed  Google Scholar 

  31. Bagi Z, Feher A, Dou H, Broskova Z. Selective up-regulation of arginase-1 in coronary arteries of diabetic patients. Front Immunol. 2013;4:293. doi:10.3389/fimmu.2013.00293.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Buga GM, Wei LH, Bauer PM, Fukuto JM, Ignarro LJ. NG-hydroxy-l-arginine and nitric oxide inhibit Caco-2 tumor cell proliferation by distinct mechanisms. Am J Physiol. 1998;275(4 Pt 2):R1256–64.

    CAS  PubMed  Google Scholar 

  33. Singh R, Pervin S, Karimi A, Cederbaum S, Chaudhuri G. Arginase activity in human breast cancer cell lines: N(omega)-hydroxy-l-arginine selectively inhibits cell proliferation and induces apoptosis in MDA-MB-468 cells. Cancer Res. 2000;60(12):3305–12.

    CAS  PubMed  Google Scholar 

  34. Mumenthaler SM, Yu H, Tze S, Cederbaum SD, Pegg AE, Seligson DB, et al. Expression of arginase II in prostate cancer. Int J Oncol. 2008;32(2):357–65.

    CAS  PubMed  Google Scholar 

  35. Cho JS, Oh YJ, Kim OS, Na S. The effects of arginase inhibitor on lung oxidative stress and inflammation caused by pneumoperitoneum in rats. BMC Anesthesiol. 2015;15:129. doi:10.1186/s12871-015-0112-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Mendez JD, Sosa A, Palomar-Morales M. Effect of l-arginine on arginase activity in male accessory sex glands of alloxan-treated rats. Reprod Toxicol. 2002;16(6):809–13.

    Article  CAS  PubMed  Google Scholar 

  37. Davies KP. Development and therapeutic applications of nitric oxide releasing materials to treat erectile dysfunction. Future Sci OA. 2015;1(1):1–10. doi:10.4155/fso.15.53.

    Article  CAS  Google Scholar 

  38. Lacchini R, Pinheiro LC, Jaqueline M, Nobre Y, Cologna A, Antonio M, et al. P188––Plasma arginase activity may affect the responses to sildenafil in patients with erectile dysfunction. Nitric Oxide. 2014;42:142–3. doi:10.1016/j.niox.2014.09.129.

    Article  Google Scholar 

  39. You H, Gao T, Cooper TK, Morris SM Jr, Awad AS. Arginase inhibition mediates renal tissue protection in diabetic nephropathy by a nitric oxide synthase 3-dependent mechanism. Kidney Int. 2013;84(6):1189–97. doi:10.1038/ki.2013.215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Maarsingh H, Dekkers BG, Zuidhof AB, Bos IS, Menzen MH, Klein T, et al. Increased arginase activity contributes to airway remodelling in chronic allergic asthma. Eur Respir J. 2011;38(2):318–28. doi:10.1183/09031936.00057710.

    Article  CAS  PubMed  Google Scholar 

  41. Holowatz LA, Kenney WL. Up-regulation of arginase activity contributes to attenuated reflex cutaneous vasodilatation in hypertensive humans. J Physiol. 2007;581(Pt 2):863–72. doi:10.1113/jphysiol.2007.128959.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Shemyakin A, Kovamees O, Rafnsson A, Bohm F, Svenarud P, Settergren M, et al. Arginase inhibition improves endothelial function in patients with coronary artery disease and type 2 diabetes mellitus. Circulation. 2012;126(25):2943–50. doi:10.1161/CIRCULATIONAHA.112.140335.

    Article  CAS  PubMed  Google Scholar 

  43. Quitter F, Figulla HR, Ferrari M, Pernow J, Jung C. Increased arginase levels in heart failure represent a therapeutic target to rescue microvascular perfusion. Clin Hemorheol Microcirc. 2013;54(1):75–85. doi:10.3233/CH-2012-1617.

    CAS  PubMed  Google Scholar 

  44. Reddy PU, Rao JV. Inhibition of arginase in sheep brain homogenates by some L-amino acids. Experientia. 1981;37(8):814.

    Article  CAS  PubMed  Google Scholar 

  45. Lewis C, Zhu W, Pavkov ML, Kinney CM, Dicorleto PE, Kashyap VS. Arginase blockade lessens endothelial dysfunction after thrombosis. J Vasc Surg. 2008;48(2):441–6. doi:10.1016/j.jvs.2008.02.030.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Demougeot C, Prigent-Tessier A, Marie C, Berthelot A. Arginase inhibition reduces endothelial dysfunction and blood pressure rising in spontaneously hypertensive rats. J Hypertens. 2005;23(5):971–8.

    Article  CAS  PubMed  Google Scholar 

  47. Selamnia M, Mayeur C, Robert V, Blachier F. Alpha-difluoromethylornithine (DFMO) as a potent arginase activity inhibitor in human colon carcinoma cells. Biochem Pharmacol. 1998;55(8):1241–5.

    Article  CAS  PubMed  Google Scholar 

  48. Busnel O, Carreaux F, Carboni B, Pethe S, Goff SV, Mansuy D, et al. Synthesis and evaluation of new omega-borono-alpha-amino acids as rat liver arginase inhibitors. Bioorg Med Chem. 2005;13(7):2373–9. doi:10.1016/j.bmc.2005.01.053.

    Article  CAS  PubMed  Google Scholar 

  49. Christianson DW. Arginase: structure, mechanism, and physiological role in male and female sexual arousal. Acc Chem Res. 2005;38(3):191–201. doi:10.1021/ar040183k.

    Article  CAS  PubMed  Google Scholar 

  50. Cox JD, Kim NN, Traish AM, Christianson DW. Arginase-boronic acid complex highlights a physiological role in erectile function. Nat Struct Biol. 1999;6(11):1043–7. doi:10.1038/14929.

    Article  CAS  PubMed  Google Scholar 

  51. Cox JD, Cama E, Colleluori DM, Pethe S, Boucher JL, Mansuy D, et al. Mechanistic and metabolic inferences from the binding of substrate analogues and products to arginase. Biochemistry. 2001;40(9):2689–701.

    Article  CAS  PubMed  Google Scholar 

  52. Kim NN, Christianson DW, Traish AM. Role of arginase in the male and female sexual arousal response. J Nutr. 2004;134(10 Suppl):2873S–9S (discussion 95S).

    CAS  PubMed  Google Scholar 

  53. Huynh NN, Harris EE, Chin-Dusting JF, Andrews KL. The vascular effects of different arginase inhibitors in rat isolated aorta and mesenteric arteries. Br J Pharmacol. 2009;156(1):84–93. doi:10.1111/j.1476-5381.2008.00036.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Segal R, Hannan JL, Liu X, Kutlu O, Burnett AL, Champion HC, et al. Chronic oral administration of the arginase inhibitor 2(S)-amino-6-boronohexanoic acid (ABH) improves erectile function in aged rats. J Androl. 2012;33(6):1169–75. doi:10.2164/jandrol.111.015834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ivanenkov YA, Chufarova NV. Small-molecule arginase inhibitors. Pharm Pat Anal. 2014;3(1):65–85. doi:10.4155/ppa.13.75.

    Article  CAS  PubMed  Google Scholar 

  56. Baggio R, Emig FA, Christianson DW, Ash DE, Chakder S, Rattan S. Biochemical and functional profile of a newly developed potent and isozyme-selective arginase inhibitor. J Pharmacol Exp Ther. 1999;290(3):1409–16.

    CAS  PubMed  Google Scholar 

  57. Numao N, Masuda H, Sakai Y, Okada Y, Kihara K, Azuma H. Roles of attenuated neuronal nitric-oxide synthase protein expression and accelerated arginase activity in impairing neurogenic relaxation of corpus cavernosum in aged rabbits. BJU Int. 2007;99(6):1495–9. doi:10.1111/j.1464-410X.2007.06860.x.

    Article  CAS  PubMed  Google Scholar 

  58. Xu L, Hilliard B, Carmody RJ, Tsabary G, Shin H, Christianson DW, et al. Arginase and autoimmune inflammation in the central nervous system. Immunology. 2003;110(1):141–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Baggio R, Elbaum D, Kanyo ZF, Carroll PJ, Cavalli RC, Ash DE, et al. Inhibition of Mn2+ 2-arginase by borate leads to the design of a transition state analogue inhibitor, 2(S)-amino-6-boronohexanoic acid. J Am Chem Soc. 1997;119(34):8107–8. doi:10.1021/ja971312d.

    Article  CAS  Google Scholar 

  60. Van Zandt MC, Whitehouse DL, Golebiowski A, Ji MK, Zhang M, Beckett RP, et al. Discovery of (R)-2-amino-6-borono-2-(2-(piperidin-1-yl)ethyl)hexanoic acid and congeners as highly potent inhibitors of human arginases I and II for treatment of myocardial reperfusion injury. J Med Chem. 2013;56(6):2568–80. doi:10.1021/jm400014c.

    Article  PubMed  CAS  Google Scholar 

  61. Kim NN, Cox JD, Baggio RF, Emig FA, Mistry SK, Harper SL, et al. Probing erectile function: S-(2-boronoethyl)-l-cysteine binds to arginase as a transition state analogue and enhances smooth muscle relaxation in human penile corpus cavernosum. Biochemistry. 2001;40(9):2678–88.

    Article  CAS  PubMed  Google Scholar 

  62. Car BD, Flint OP, Oberdoerster J, Price J, Foster WR, Gemzik B, et al. Tanespimycin reverses bortezomib-induced inhibition of granulopoiesis. Blood. 2009;114(22):1479.

    Google Scholar 

  63. Golebiowski A, Paul Beckett R, Van Zandt M, Ji MK, Whitehouse D, Ryder TR, et al. 2-Substituted-2-amino-6-boronohexanoic acids as arginase inhibitors. Bioorg Med Chem Lett. 2013;23(7):2027–30. doi:10.1016/j.bmcl.2013.02.024.

    Article  CAS  PubMed  Google Scholar 

  64. Golebiowski A, Whitehouse D, Beckett RP, Van Zandt M, Ji MK, Ryder TR, et al. Synthesis of quaternary alpha-amino acid-based arginase inhibitors via the Ugi reaction. Bioorg Med Chem Lett. 2013;23(17):4837–41. doi:10.1016/j.bmcl.2013.06.092.

    Article  CAS  PubMed  Google Scholar 

  65. Hubbard SA. Comparative toxicology of borates. Biol Trace Elem Res. 1998;66(1–3):343–57. doi:10.1007/BF02783147.

    Article  CAS  PubMed  Google Scholar 

  66. Krotova K, Patel JM, Block ER, Zharikov S. Endothelial arginase II responds to pharmacological inhibition by elevation in protein level. Mol Cell Biochem. 2010;343(1–2):211–6. doi:10.1007/s11010-010-0515-5.

    Article  CAS  PubMed  Google Scholar 

  67. Abdul-Hussain MN, Jia YL, Hussain SN. Mechanisms mediating the vasodilatory effects of N-hydroxy-l-arginine in coronary arteries. Eur J Pharmacol. 1996;305(1–3):155–61.

    Article  CAS  PubMed  Google Scholar 

  68. Boucher JL, Custot J, Vadon S, Delaforge M, Lepoivre M, Tenu JP, et al. N omega-hydroxyl-l-arginine, an intermediate in the l-arginine to nitric oxide pathway, is a strong inhibitor of liver and macrophage arginase. Biochem Biophys Res Commun. 1994;203(3):1614–21.

    Article  CAS  PubMed  Google Scholar 

  69. Beranova P, Chalupsky K, Kleschyov AL, Schott C, Boucher JL, Mansuy D, et al. Nomega-hydroxy-l-arginine homologues and hydroxylamine as nitric oxide-dependent vasorelaxant agents. Eur J Pharmacol. 2005;516(3):260–7. doi:10.1016/j.ejphar.2005.04.021.

    Article  CAS  PubMed  Google Scholar 

  70. Gronros J, Jung C, Lundberg JO, Cerrato R, Ostenson CG, Pernow J. Arginase inhibition restores in vivo coronary microvascular function in type 2 diabetic rats. Am J Physiol Heart Circ Physiol. 2011;300(4):H1174–81. doi:10.1152/ajpheart.00560.2010.

    Article  PubMed  CAS  Google Scholar 

  71. Takahashi N, Ogino K, Takemoto K, Hamanishi S, Wang DH, Takigawa T, et al. Direct inhibition of arginase attenuated airway allergic reactions and inflammation in a Dermatophagoides farinae-induced NC/Nga mouse model. Am J Physiol Lung Cell Mol Physiol. 2010;299(1):L17–24. doi:10.1152/ajplung.00216.2009.

    Article  CAS  PubMed  Google Scholar 

  72. Hu H, Moon J, Chung JH, Kim OY, Yu R, Shin MJ. Arginase inhibition ameliorates adipose tissue inflammation in mice with diet-induced obesity. Biochem Biophys Res Commun. 2015;464(3):840–7. doi:10.1016/j.bbrc.2015.07.048.

    Article  CAS  PubMed  Google Scholar 

  73. Sasatomi K, Hiragata S, Miyazato M, Chancellor MB, Morris SM Jr, Yoshimura N. Nitric oxide-mediated suppression of detrusor overactivity by arginase inhibitor in rats with chronic spinal cord injury. Urology. 2008;72(3):696–700. doi:10.1016/j.urology.2007.12.002.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Olivon VC, Fraga-Silva RA, Segers D, Demougeot C, de Oliveira AM, Savergnini SS, et al. Arginase inhibition prevents the low shear stress-induced development of vulnerable atherosclerotic plaques in ApoE-/- mice. Atherosclerosis. 2013;227(2):236–43. doi:10.1016/j.atherosclerosis.2012.12.014.

    Article  CAS  PubMed  Google Scholar 

  75. Prati C, Berthelot A, Kantelip B, Wendling D, Demougeot C. Treatment with the arginase inhibitor Nw-hydroxy-nor-l-arginine restores endothelial function in rat adjuvant-induced arthritis. Arthritis Res Ther. 2012;14(3):R130. doi:10.1186/ar3860.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Havlinova Z, Babicova A, Hroch M, Chladek J. Comparative pharmacokinetics of N(omega)-hydroxy-nor-l-arginine, an arginase inhibitor, after single-dose intravenous, intraperitoneal and intratracheal administration to brown Norway rats. Xenobiotica. 2013;43(10):886–94. doi:10.3109/00498254.2013.780672.

    Article  CAS  PubMed  Google Scholar 

  77. Havlinova Z, Hroch M, Nagy A, Sispera L, Holecek M, Chladek J. Single- and multiple-dose pharmacokinetics of arginase inhibitor Nomega-hydroxy-nor-l-arginine, and its effect on plasma amino acids concentrations in Wistar rats. Gen Physiol Biophys. 2014;33(2):189–98. doi:10.4149/gpb_2013078.

    Article  CAS  PubMed  Google Scholar 

  78. Schade D, Kotthaus J, Klein N, Kotthaus J, Clement B. Prodrug design for the potent cardiovascular agent Nomega-hydroxy-l-arginine (NOHA): synthetic approaches and physicochemical characterization. Org Biomol Chem. 2011;9(14):5249–59. doi:10.1039/c0ob01117g.

    Article  CAS  PubMed  Google Scholar 

  79. Hroch M, Havlinova Z, Nobilis M, Chladek J. HPLC determination of arginases inhibitor N-(omega)-hydroxy-nor-l-arginine using core-shell particle column and LC-MS/MS identification of principal metabolite in rat plasma. J Chromatogr B Anal Technol Biomed Life Sci. 2012;880(1):90–9. doi:10.1016/j.jchromb.2011.11.022.

    Article  CAS  Google Scholar 

  80. Clement B, Kunze T, Heberling S. Reduction of Nomega-hydroxy-l-arginine to l-arginine by pig liver microsomes, mitochondria, and human liver microsomes. Biochem Biophys Res Commun. 2006;349(2):869–73. doi:10.1016/j.bbrc.2006.08.123.

    Article  CAS  PubMed  Google Scholar 

  81. Kotthaus J, Wahl B, Havemeyer A, Kotthaus J, Schade D, Garbe-Schonberg D, et al. Reduction of N(omega)-hydroxy-l-arginine by the mitochondrial amidoxime reducing component (mARC). Biochem J. 2011;433(2):383–91. doi:10.1042/BJ20100960.

    Article  CAS  PubMed  Google Scholar 

  82. McCann PPPAE, Sjoerdsma A. Inhibition of polyamine metabolism: biological significance and basis for new therapies. Orlando: Academic Press; 1987.

    Google Scholar 

  83. McCann PP, Bacchi CJ, Clarkson AB Jr, Seed JR, Nathan HC, Amole BO, et al. Further studies on difluoromethylornithine in African trypanosomes. Med Biol. 1981;59(5–6):434–40.

    CAS  PubMed  Google Scholar 

  84. Xu W, Kaneko FT, Zheng S, Comhair SA, Janocha AJ, Goggans T, et al. Increased arginase II and decreased NO synthesis in endothelial cells of patients with pulmonary arterial hypertension. FASEB J. 2004;18(14):1746–8. doi:10.1096/fj.04-2317fje.

    CAS  PubMed  Google Scholar 

  85. Griffin CA, Slavik M, Chien SC, Hermann J, Thompson G, Blanc O, et al. Phase I trial and pharmacokinetic study of intravenous and oral alpha-difluoromethylornithine. Investig New Drugs. 1987;5(2):177–86.

    Article  CAS  Google Scholar 

  86. Haegele KD, Alken RG, Grove J, Schechter PJ, Koch-Weser J. Kinetics of alpha-difluoromethylornithine: an irreversible inhibitor of ornithine decarboxylase. Clin Pharmacol Ther. 1981;30(2):210–7.

    Article  CAS  PubMed  Google Scholar 

  87. Carbone PP, Douglas JA, Thomas J, Tutsch K, Pomplun M, Hamielec M, et al. Bioavailability study of oral liquid and tablet forms of alpha-difluoromethylornithine. Clin Cancer Res. 2000;6(10):3850–4.

    CAS  PubMed  Google Scholar 

  88. Gunaratna PC, Wilson GS, Slavik M. Pharmacokinetic studies of alpha-difluoromethylornithine in rabbits using an enzyme-linked immunosorbent assay. J Pharm Biomed Anal. 1994;12(10):1249–57.

    Article  CAS  PubMed  Google Scholar 

  89. Morgan ET. Impact of infectious and inflammatory disease on cytochrome P450-mediated drug metabolism and pharmacokinetics. Clin Pharmacol Ther. 2009;85(4):434–8. doi:10.1038/clpt.2008.302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hu T, Zuo H, Riley CM, Stobaugh JF, Lunte SM. Determination of alpha-difluoromethylornithine in blood by microdialysis sampling and capillary electrophoresis with UV detection. J Chromatogr A. 1995;716(1–2):381–8.

    Article  CAS  PubMed  Google Scholar 

  91. Saheki T, Sato Y, Takada S, Katsunuma T. Regulation of urea synthesis in rat liver. Inhibition of urea synthesis by l-norvaline. J Biochem. 1979;86(3):745–50.

    Article  CAS  PubMed  Google Scholar 

  92. Bachetti T, Comini L, Francolini G, Bastianon D, Valetti B, Cadei M, et al. Arginase pathway in human endothelial cells in pathophysiological conditions. J Mol Cell Cardiol. 2004;37(2):515–23. doi:10.1016/j.yjmcc.2004.05.004.

    Article  CAS  PubMed  Google Scholar 

  93. De A, Singh MF, Singh V, Ram V, Bisht S. Treatment effect of l-Norvaline on the sexual performance of male rats with streptozotocin induced diabetes. Eur J Pharmacol. 2016;771:247–54. doi:10.1016/j.ejphar.2015.12.008.

    Article  CAS  PubMed  Google Scholar 

  94. Chang CI, Liao JC, Kuo L. Arginase modulates nitric oxide production in activated macrophages. Am J Physiol. 1998;274(1 Pt 2):H342–8.

    CAS  PubMed  Google Scholar 

  95. Tews JK, Harper AE. Tissue amino acids in rats fed norleucine, norvaline, homoarginine or other amino acid analogues. J Nutr. 1986;116(8):1464–72.

    CAS  PubMed  Google Scholar 

  96. Kinnory DS, Takeda Y, Mohamed MS, Greenberg DM. Metabolism of dl-norvaline-3-C14. Arch Biochem Biophys. 1955;55(2):546–54. doi:10.1016/0003-9861(55)90432-X.

    Article  CAS  Google Scholar 

  97. Yoon J, Park M, Lee J, Min BS, Ryoo S. Endothelial nitric oxide synthase activation through obacunone-dependent arginase inhibition restored impaired endothelial function in ApoE-null mice. Vasc Pharmacol. 2014;60(3):102–9. doi:10.1016/j.vph.2014.01.006.

    Article  CAS  Google Scholar 

  98. Jung H, Sok DE, Kim Y, Min B, Lee J, Bae K. Potentiating effect of obacunone from Dictamnus dasycarpus on cytotoxicity of microtuble inhibitors, vincristine, vinblastine and taxol. Planta Med. 2000;66(1):74–6. doi:10.1055/s-0029-1243113.

    Article  CAS  PubMed  Google Scholar 

  99. Wang P, Sun J, Gao E, Zhao Y, Qu W, Yu Z. Simultaneous determination of limonin, dictamnine, obacunone and fraxinellone in rat plasma by a validated UHPLC-MS/MS and its application to a pharmacokinetic study after oral administration of Cortex Dictamni extract. J Chromatogr B Anal Technol Biomed Life Sci. 2013;928:44–51. doi:10.1016/j.jchromb.2013.03.018.

    Article  CAS  Google Scholar 

  100. Ren W, Xin SK, Han LY, Zuo R, Li Y, Gong MX, et al. Comparative metabolism of four limonoids in human liver microsomes using ultra-high-performance liquid chromatography coupled with high-resolution LTQ-Orbitrap mass spectrometry. Rapid Commun Mass Spectrom. 2015;29(21):2045–56. doi:10.1002/rcm.7365.

    Article  CAS  PubMed  Google Scholar 

  101. Joe Y, Zheng M, Kim HJ, Kim S, Uddin MJ, Park C, et al. Salvianolic acid B exerts vasoprotective effects through the modulation of heme oxygenase-1 and arginase activities. J Pharmacol Exp Ther. 2012;341(3):850–8. doi:10.1124/jpet.111.190736.

    Article  CAS  PubMed  Google Scholar 

  102. Zhang J, Yu H, Sheng Y, Li L, Ye M, Guo D. HPLC determination and pharmacokinetic studies of salvianolic acid B in rat plasma after oral administration of Radix Salviae Miltiorrhizae extract. Biomed Chromatogr. 2005;19(1):15–8. doi:10.1002/bmc.408.

    Article  PubMed  CAS  Google Scholar 

  103. Gao DY, Han LM, Zhang LH, Fang XL, Wang JX. Bioavailability of salvianolic acid B and effect on blood viscosities after oral administration of salvianolic acids in beagle dogs. Arch Pharm Res. 2009;32(5):773–9. doi:10.1007/s12272-009-1517-2.

    Article  CAS  PubMed  Google Scholar 

  104. Li X, Cheng C, Wang F, Huang Y, Jia W, Olaleye OE, et al. Pharmacokinetics of catechols in human subjects intravenously receiving XueBiJing injection, an emerging antiseptic herbal medicine. Drug Metab Pharmacokinet. 2016;31(1):95–8. doi:10.1016/j.dmpk.2015.10.005.

    Article  CAS  PubMed  Google Scholar 

  105. Hou R, Wang L, Du MB, Liang RX, Liu SZ, Wang YL, et al. Pharmacokinetic study on three main ingredients of refined coronary cataplasm. Zhongguo Zhong Yao Za Zhi. 2012;37(23):3641–6.

    CAS  PubMed  Google Scholar 

  106. Zhao J, Xu XL, Yi H, Zhang HM, Liu XQ, Zhu JJ, et al. Absorption of aqueous extracts from Salviae Miltiorrhizae Radix et Rhizoma by everted intestinal sac method. Zhongguo Zhong Yao Za Zhi. 2015;40(15):3088–93.

    PubMed  Google Scholar 

  107. Lai XJ, Liu HQ, Li JS, Di LQ, Cai BC. Intestinal absorption properties of three components in salvianolic acid extract and the effect of borneol on their absorption in rats. Yao Xue Xue Bao. 2010;45(12):1576–81.

    CAS  PubMed  Google Scholar 

  108. Huang B, Li G, Guo YF, Wang SS, Liu F, Xu HY, et al. Study on absorption location of four components from Naoxintong capsule. Zhongguo Zhong Yao Za Zhi. 2013;38(6):889–93.

    CAS  PubMed  Google Scholar 

  109. Steppan J, Nyhan D, Berkowitz DE. Development of novel arginase inhibitors for therapy of endothelial dysfunction. Front Immunol. 2013;4:278. doi:10.3389/fimmu.2013.00278.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Qi Q, Hao K, Li FY, Cao LJ, Wang GJ, Hao HP. The identification and pharmacokinetic studies of metabolites of salvianolic acid B after intravenous administration in rats. Chin J Nat Med. 2013;11(5):560–5. doi:10.1016/S1875-5364(13)60101-6.

    Article  CAS  PubMed  Google Scholar 

  111. Woo A, Shin W, Cuong TD, Min B, Lee JH, Jeon BH, et al. Arginase inhibition by piceatannol-3′-O-beta-d-glucopyranoside improves endothelial dysfunction via activation of endothelial nitric oxide synthase in ApoE-null mice fed a high-cholesterol diet. Int J Mol Med. 2013;31(4):803–10. doi:10.3892/ijmm.2013.1261.

    CAS  PubMed  Google Scholar 

  112. Kim DH, Park EK, Bae EA, Han MJ. Metabolism of rhaponticin and chrysophanol 8-o-beta-d-glucopyranoside from the rhizome of rheum undulatum by human intestinal bacteria and their anti-allergic actions. Biol Pharm Bull. 2000;23(7):830–3.

    Article  CAS  PubMed  Google Scholar 

  113. Frombaum M, Therond P, Djelidi R, Beaudeux JL, Bonnefont-Rousselot D, Borderie D. Piceatannol is more effective than resveratrol in restoring endothelial cell dimethylarginine dimethylaminohydrolase expression and activity after high-glucose oxidative stress. Free Radic Res. 2011;45(3):293–302. doi:10.3109/10715762.2010.527337.

    Article  CAS  PubMed  Google Scholar 

  114. Zhang CY, Zhang H, Dong Y, Ren WG, Chen HW. Study on compatibility of Salviae Miltiorrhizae Radix et Rhizoma and Chuanxiong Rhizoma based on pharmacokinetics of effective components salvianolic acid B and ferulic acid in rat plasma. Zhongguo Zhong Yao Za Zhi. 2015;40(8):1589–93.

    CAS  PubMed  Google Scholar 

  115. Qiu F, Zhang R, Sun J, Jiye A, Hao H, Peng Y, et al. Inhibitory effects of seven components of danshen extract on catalytic activity of cytochrome P450 enzyme in human liver microsomes. Drug Metab Dispos. 2008;36(7):1308–14. doi:10.1124/dmd.108.021030.

    Article  CAS  PubMed  Google Scholar 

  116. Qin CZ, Ren X, Zhou HH, Mao XY, Liu ZQ. Inhibitory effect of salvianolate on human cytochrome P450 3A4 in vitro involving a noncompetitive manner. Int J Clin Exp Med. 2015;8(9):15549–55.

    PubMed  PubMed Central  Google Scholar 

  117. Lim CJC, Cuong TD, Hung TM, Ryoo SW, Lee JH, Kim EH, Woo MH, Choi JS, Min BS. Arginase II inhibitory activity of phenolic compounds from saururus chinensis. Bull Korean Chem Soc. 2012;33(9):3079–82. doi:10.5012/bkcs.2012.33.9.3079.

    Article  CAS  Google Scholar 

  118. Kim YJ, Han SY, Seo JS, Chin YW, Choi YH. Pharmacokinetics, tissue distribution, and tentative metabolite identification of sauchinone in mice by microsampling and HPLC-MS/MS methods. Biol Pharm Bull. 2015;38(2):218–27. doi:10.1248/bpb.b14-00524.

    Article  CAS  PubMed  Google Scholar 

  119. Xu CL, Chen JW, Ju WZ, Liu SJ, Chen Y, Chen ZP, et al. Quantitative determination of sauchinone in rat plasma by liquid chromatography-mass spectrometry. Biomed Chromatogr. 2012;26(10):1210–4. doi:10.1002/bmc.2681.

    Article  CAS  PubMed  Google Scholar 

  120. Sun JH, Zhang LT, Wang CY, Yuan ZF, Lu XH. Study on the metabolite of stilbene glucoside in mice by liquid chromatography tandem-mass spectrometry. Yao Xue Xue Bao. 2003;38(12):968–70.

    CAS  PubMed  Google Scholar 

  121. Liu XD, Huang P, Lu YH, Ma M, Zhou RB, Yuan LX, et al. Pharmacokinetics of loganin, ferulic acid and stilbene glucoside in Bushen Tongluo formula in vivo. Zhongguo Zhong Yao Za Zhi. 2015;40(12):2428–34.

    CAS  PubMed  Google Scholar 

  122. Lv G, Lou Z, Chen S, Gu H, Shan L. Pharmacokinetics and tissue distribution of 2,3,5,4′-tetrahydroxystilbene-2-O-beta-D-glucoside from traditional Chinese medicine Polygonum multiflorum following oral administration to rats. J Ethnopharmacol. 2011;137(1):449–56. doi:10.1016/j.jep.2011.05.049.

    Article  CAS  PubMed  Google Scholar 

  123. Ilies M, Di Costanzo L, North ML, Scott JA, Christianson DW. 2-aminoimidazole amino acids as inhibitors of the binuclear manganese metalloenzyme human arginase I. J Med Chem. 2010;53(10):4266–76. doi:10.1021/jm100306a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Choi K, Yoon J, Lim HK, Ryoo S. Korean red ginseng water extract restores impaired endothelial function by inhibiting arginase activity in aged mice. Korean J Physiol Pharmacol. 2014;18(2):95–101. doi:10.4196/kjpp.2014.18.2.95.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Shin W, Yoon J, Oh GT, Ryoo S. Korean red ginseng inhibits arginase and contributes to endotheliumdependent vasorelaxation through endothelial nitric oxide synthase coupling. J Ginseng Res. 2013;37(1):64–73. doi:10.5142/jgr.2013.37.64.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Kim SW, Cuong TD, Hung TM, Ryoo S, Lee JH, Min BS. Arginase II inhibitory activity of flavonoid compounds from Scutellaria indica. Arch Pharm Res. 2013;36(8):922–6. doi:10.1007/s12272-013-0125-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hwang HM, Lee JH, Min BS, Jeon BH, Hoe KL, Kim YM, et al. A novel arginase inhibitor derived from Scutellavia indica restored endothelial function in ApoE-null mice fed a high-cholesterol diet. J Pharmacol Exp Ther. 2015;355(1):57–65. doi:10.1124/jpet.115.224592.

    Article  CAS  PubMed  Google Scholar 

  128. Chandra S, Romero MJ, Shatanawi A, Alkilany AM, Caldwell RB, Caldwell RW. Oxidative species increase arginase activity in endothelial cells through the RhoA/Rho kinase pathway. Br J Pharmacol. 2012;165(2):506–19. doi:10.1111/j.1476-5381.2011.01584.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Guo X, Wang L, Chen B, Li Q, Wang J, Zhao M, et al. ERM protein moesin is phosphorylated by advanced glycation end products and modulates endothelial permeability. Am J Physiol Heart Circ Physiol. 2009;297(1):H238–46. doi:10.1152/ajpheart.00196.2009.

    Article  CAS  PubMed  Google Scholar 

  130. Haffner I, Teupser D, Holdt LM, Ernst J, Burkhardt R, Thiery J. Regulation of arginase-1 expression in macrophages by a protein kinase A type I and histone deacetylase dependent pathway. J Cell Biochem. 2008;103(2):520–7. doi:10.1002/jcb.21422.

    Article  CAS  PubMed  Google Scholar 

  131. Santhanam L, Lim HK, Lim HK, Miriel V, Brown T, Patel M, et al. Inducible NO synthase dependent S-nitrosylation and activation of arginase1 contribute to age-related endothelial dysfunction. Circ Res. 2007;101(7):692–702. doi:10.1161/CIRCRESAHA.107.157727.

    Article  CAS  PubMed  Google Scholar 

  132. Wang L, Bhatta A, Toque HA, Rojas M, Yao L, Xu Z, et al. Arginase inhibition enhances angiogenesis in endothelial cells exposed to hypoxia. Microvasc Res. 2015;98:1–8. doi:10.1016/j.mvr.2014.11.002.

    Article  PubMed  CAS  Google Scholar 

  133. Holinstat M, Mehta D, Kozasa T, Minshall RD, Malik AB. Protein kinase Calpha-induced p115RhoGEF phosphorylation signals endothelial cytoskeletal rearrangement. J Biol Chem. 2003;278(31):28793–8. doi:10.1074/jbc.M303900200.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Faculty Development Grant from Pacific University, Oregon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fawzy Elbarbry.

Ethics declarations

Conflict of Interest

The authors Dr. Abdelkawy K, Dr. Lack K, and Dr. Elbarbry F declare no conflict of interest.

Funding

No external sources of funding were used to assist in the preparation of this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelkawy, K.S., Lack, K. & Elbarbry, F. Pharmacokinetics and Pharmacodynamics of Promising Arginase Inhibitors. Eur J Drug Metab Pharmacokinet 42, 355–370 (2017). https://doi.org/10.1007/s13318-016-0381-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-016-0381-y

Keywords

Navigation