Skip to main content
Log in

Enhancement of Curcumin Bioavailability Via the Prodrug Approach: Challenges and Prospects

  • Current opinion
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Curcumin is a natural product with many interesting pharmacological properties. However, these are offset by the particularly poor biopharmaceutical properties. The oral bioavailability of curcumin in humans is very low, mainly due to low solubility, poor stability, and extensive metabolism. This has led to multiple approaches to improve bioavailability, including administration of curcumin with metabolism inhibitors, formulation into nanoparticles, modification of the curcumin structure, and development of curcumin prodrugs. In this paper, we focus on the pharmacokinetic outcomes of these approaches. Pharmacokinetic parameters of curcumin after release from prodrugs are dependent on the linker between curcumin and the promoiety, and the release itself may depend on the physiological and enzymatic environment at the site of cleavage. This is an area in which more data are required for rational design of improved linkers. Cytotoxicity of curcumin prodrugs seems to correlate well with cellular uptake in vitro, but the in vivo relevance is uncertain. We conclude that improved experimental and theoretical models of absorption of curcumin prodrugs, development of accurate analytical methods for simultaneous measurement of plasma levels of prodrug and released curcumin, and acquisition of more pharmacokinetic data in animal models for dose prediction in humans are required to facilitate movement of curcumin prodrugs into clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. El-Magboub A, et al. Biological targets and pharmacology of curcumin. In: Pouliquen DL, editor. Curcumin: synthesis, emerging role in pain management and health implications. Nova Science Publishers Inc: New York; 2014. p. 103–34.

    Google Scholar 

  2. Dona S, et al. Chemopreventive and chemotherapeutic potential of curcumin in breast cancer. Curr Drug Targets. 2012;13(14):1799–819.

    Article  Google Scholar 

  3. Nautiyal J, et al. Combination of dasatinib and curcumin eliminates chemo-resistant colon cancer cells. J Mol Signal. 2011;6(1):1–11.

    Google Scholar 

  4. Begum AN, et al. Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and alzheimer’s disease. J Pharmacol Exp Ther. 2008;326(1):196–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ishrat T, et al. Amelioration of cognitive deficits and neurodegeneration by curcumin in rat model of sporadic dementia of Alzheimer’s type (SDAT). Eur Neuropsychopharm. 2009;19(9):636–47.

    Article  CAS  Google Scholar 

  6. Nemmar A, Subramaniyan D, Ali BH. Protective effect of curcumin on pulmonary and cardiovascular effects induced by repeated exposure to diesel exhaust particles in mice. PLoS One. 2012;7(6):e39554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Buadonpri W, et al. Synthetic curcumin inhibits carrageenan-induced paw edema in rats. J Health Res. 2009;23(1):11–6.

    CAS  Google Scholar 

  8. Chandran B, Goel A. A randomized, pilot study to assess the efficacy and safety of curcumin in patients with active rheumatoid arthritis. Phytother Res. 2012;26(11):1719–25.

    Article  CAS  PubMed  Google Scholar 

  9. Chuengsamarn S, et al. Curcumin extract for prevention of type 2 diabetes. Diabetes Care. 2012;35(11):2121–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gandapu U, et al. Curcumin-loaded apotransferrin nanoparticles provide efficient cellular uptake and effectively inhibit HIV-1 replication in vitro. PLoS One. 2011;6(8):e23388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dhillon N, et al. Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res. 2008;14(14):4491–9.

    Article  CAS  PubMed  Google Scholar 

  12. Carvalho DDM, et al. Production, solubility and antioxidant activity of curcumin nanosuspension. Food Sci Technol (Campinas). 2015;35(1):115–9.

  13. Wang YJ, et al. Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal. 1997;15(12):1867–76.

    Article  CAS  PubMed  Google Scholar 

  14. Oetari S, et al. Effects of curcumin on cytochrome P450 and glutathione S-transferase activities in rat liver. Biochem Pharmacol. 1996;51(1):39–45.

    Article  CAS  PubMed  Google Scholar 

  15. Anand P, et al. Bioavailability of curcumin: problems and promises. Mol Pharmaceut. 2007;4(6):807–18.

    Article  CAS  Google Scholar 

  16. Prasad S, Tyagi AK, Aggarwal BB. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat. 2014;46(1):2–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu W, et al. Oral bioavailability of curcumin: problems and advancements. J Drug Target. 2016;24(8):694–702.

  18. Wahlström B, Blennow G. A study on the fate of curcumin in the rat. Acta Pharmacol Toxicol. 1978;43(2):86–92.

    Article  Google Scholar 

  19. Shoba G, et al. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 1998;64(4):353–6.

    Article  CAS  PubMed  Google Scholar 

  20. Safavy A, et al. Design and development of water-soluble curcumin conjugates as potential anticancer agents. J Med Chem. 2007;50(24):6284–8.

    Article  CAS  PubMed  Google Scholar 

  21. Ireson C, et al. Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Cancer Res. 2001;61(3):1058–64.

    CAS  PubMed  Google Scholar 

  22. Ireson CR, et al. Metabolism of the cancer chemopreventive agent curcumin in human and rat intestine. Cancer Epidem Biomar. 2002;11(1):105–11.

    CAS  Google Scholar 

  23. Asai A, Miyazawa T. Occurrence of orally administered curcuminoid as glucuronide and glucuronide/sulfate conjugates in rat plasma. Life Sci. 2000;67(23):2785–93.

    Article  CAS  PubMed  Google Scholar 

  24. Metzler M, et al. Curcumin uptake and metabolism. BioFactors. 2013;39(1):14–20.

    Article  CAS  PubMed  Google Scholar 

  25. Rojsitthisak P, et al. Design, synthesis and biological activities of curcumin prodrugs. In: Pouliquen DL, editor. Curcumin: synthesis, emerging role in pain management and health implications. Nova Science Publishers Inc: New York; 2014. p. 135–76.

    Google Scholar 

  26. Dubey SK, et al. Design, synthesis and characterization of some bioactive conjugates of curcumin with glycine, glutamic acid, valine and demethylenated piperic acid and study of their antimicrobial and antiproliferative properties. Eur J Med Chem. 2008;43(9):1837–46.

    Article  CAS  PubMed  Google Scholar 

  27. Parvathy KS, Negi PS, Srinivas P. Curcumin–amino acid conjugates: synthesis, antioxidant and antimutagenic attributes. Food Chem. 2010;120(2):523–30.

    Article  CAS  Google Scholar 

  28. Singh RK, et al. Synthesis, antibacterial and antiviral properties of curcumin bioconjugates bearing dipeptide, fatty acids and folic acid. Eur J Med Chem. 2010;45(3):1078–86.

    Article  CAS  PubMed  Google Scholar 

  29. Han YR, et al. A simple RP-HPLC method for the simultaneous determination of curcumin and its prodrug, curcumin didecanoate, in rat plasma and the application to pharmacokinetic study. Biomed Chromatogr. 2011;25(10):1144–9.

    Article  CAS  PubMed  Google Scholar 

  30. Wei XL, et al. Oily nanosuspension for long-acting intramuscular delivery of curcumin didecanoate prodrug: preparation, characterization and in vivo evaluation. Eur J Pharm Sci. 2013;49(2):286–93.

    Article  CAS  PubMed  Google Scholar 

  31. Wichitnithad W, et al. Synthesis, characterization and biological evaluation of succinate prodrugs of curcuminoids for colon cancer treatment. Molecules. 2011;16(2):1888–900.

    Article  CAS  PubMed  Google Scholar 

  32. Wongsrisakul J, et al. Antinociceptive effects of curcumin diethyl disuccinate in animal models. J Health Res. 2010;24(4):175–80.

    CAS  Google Scholar 

  33. Bangphumi K, et al. Pharmacokinetics of curcumin diethyl disuccinate, a prodrug of curcumin, in Wistar rats. Eur J Drug Metab Pharmacokinet. 2015;1–9.

  34. Tang H, et al. Amphiphilic curcumin conjugate-forming nanoparticles as anticancer prodrug and drug carriers: in vitro and in vivo effects. Nanomedicine. 2010;5(6):855–65.

    Article  CAS  PubMed  Google Scholar 

  35. Bhunchu S, Rojsitthisak P, Rojsitthisak P. Effects of preparation parameters on the characteristics of chitosan–alginate nanoparticles containing curcumin diethyl disuccinate. J Drug Deliv Sci Technol. 2015;28:64–72.

    Article  CAS  Google Scholar 

  36. Sarika PR, et al. Galactosylated pullulan–curcumin conjugate micelles for site specific anticancer activity to hepatocarcinoma cells. Colloids Surf B Biointerfaces. 2015;133:347–55.

    Article  CAS  PubMed  Google Scholar 

  37. Yan L, et al. Targeted delivery of macromolecular drugs: asialoglycoprotein receptor (ASGPR) expression by selected hepatoma cell lines used in antiviral drug development. Curr Drug Deliv. 2008;5(4):299–302.

    Article  Google Scholar 

  38. Li J, et al. Modified curcumin with hyaluronic acid: combination of pro-drug and nano-micelle strategy to address the curcumin challenge. Food Res Int. 2015;69:202–8.

    Article  CAS  Google Scholar 

  39. Dey S, Sreenivasan K. Conjugation of curcumin onto alginate enhances aqueous solubility and stability of curcumin. Carbohydr Polym. 2014;99:499–507.

    Article  CAS  PubMed  Google Scholar 

  40. Sarika PR, et al. Gum arabic-curcumin conjugate micelles with enhanced loading for curcumin delivery to hepatocarcinoma cells. Carbohydr Polym. 2015;134:167–74.

    Article  CAS  PubMed  Google Scholar 

  41. Wang Z, et al. Tuning the architecture of polymeric conjugate to mediate intracellular delivery of pleiotropic curcumin. Eur J Pharm Biopharm. 2015;90:53–62.

    Article  CAS  PubMed  Google Scholar 

  42. Li M, et al. Acetal-linked polymeric prodrug micelles for enhanced curcumin delivery. Colloids Surf B Biointerfaces. 2016;140:11–8.

    Article  CAS  PubMed  Google Scholar 

  43. Yang R, et al. Biodegradable polymer-curcumin conjugate micelles enhance the loading and delivery of low-potency curcumin. Pharm Res. 2012;29(12):3512–25.

    Article  CAS  PubMed  Google Scholar 

  44. Waghela BN, et al. Curcumin conjugated with PLGA potentiates sustainability, anti-proliferative activity and apoptosis in human colon carcinoma cells. PLoS One. 2015;10(2):e0117526.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Cai Y, et al. Synthesis, characterization and anti-cancer activity of Pluronic F68–curcumin conjugate micelles. Drug Deliv 2015;1–9.

  46. Fang XB, et al. pH-sensitive micelles based on acid-labile pluronic F68–curcumin conjugates for improved tumor intracellular drug delivery. Int J Pharm. 2016;502(1–2):28–37.

    Article  CAS  PubMed  Google Scholar 

  47. Grill AE, Koniar B, Panyam J. Co-delivery of natural metabolic inhibitors in a self-microemulsifying drug delivery system for improved oral bioavailability of curcumin. Drug Deliv Transl Res. 2014;4(4):344–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ahmad MZ, et al. Progress in nanotechnology-based drug carrier in designing of curcumin nanomedicines for cancer therapy: current state-of-the-art. J Drug Target. 2016;24(4):273–93.

    Article  CAS  PubMed  Google Scholar 

  49. Rungphanichkul N, et al. Preparation of curcuminoid niosomes for enhancement of skin permeation. Pharmazie. 2011;66(8):570–5.

    CAS  PubMed  Google Scholar 

  50. Khalil NM, et al. Pharmacokinetics of curcumin-loaded PLGA and PLGA–PEG blend nanoparticles after oral administration in rats. Colloids Surf B Biointerfaces. 2013;101:353–60.

    Article  CAS  PubMed  Google Scholar 

  51. Reid JM, et al. Mouse pharmacokinetics and metabolism of the curcumin analog, 4-piperidinone, 3,5-bis[(2-fluorophenyl)methylene]-acetate(3E,5E) (EF-24; NSC 716993). Cancer Chemother Pharmacol. 2014;73(6):1137–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Alok V, et al. Perspectives on new synthetic curcumin analogs and their potential anticancer properties. Curr Pharm Des. 2013;19(11):2047–69.

    Google Scholar 

  53. Zhou L and Wang J. Physico-chemical characterization in drug discovery. Trends in bio/pharmaceutical industry. Preclinical formulation. 2009;12–18

  54. Wichitnithad W, et al. Effects of different carboxylic ester spacers on chemical stability, release characteristics, and anticancer activity of mono-PEGylated curcumin conjugates. J Pharm Sci. 2011;100(12):5206–18.

    Article  CAS  PubMed  Google Scholar 

  55. Manju S, Sreenivasan K. Synthesis and characterization of a cytotoxic cationic polyvinylpyrrolidone–curcumin conjugate. J Pharm Sci. 2011;100(2):504–11.

    Article  CAS  PubMed  Google Scholar 

  56. Li AP. Screening for human ADME/Tox drug properties in drug discovery. Drug Discov Today. 2001;6(7):357–66.

    Article  CAS  PubMed  Google Scholar 

  57. van Breemen RB, Li Y. Caco-2 cell permeability assays to measure drug absorption. Expert Opin Drug Metab Toxicol. 2005;1(2):175–85.

    Article  PubMed  Google Scholar 

  58. Liederer BM, Borchardt RT. Enzymes involved in the bioconversion of ester-based prodrugs. J Pharm Sci. 2006;95(6):1177–95.

    Article  CAS  PubMed  Google Scholar 

  59. Yang YH, et al. Enzyme-mediated hydrolytic activation of prodrugs. Acta Pharm Sin B. 2011;1(3):143–59.

    Article  CAS  Google Scholar 

  60. Fukami T, Yokoi T. The emerging role of human esterases. Drug Metab Pharmacokinet. 2012;27(5):466–77.

    Article  CAS  PubMed  Google Scholar 

  61. Bahar FG, et al. Species difference of esterase expression and hydrolase activity in plasma. J Pharm Sci. 2012;101(10):3979–88.

    Article  CAS  PubMed  Google Scholar 

  62. Li W, Zhang J, Tse FLS. Strategies in quantitative LC-MS/MS analysis of unstable small molecules in biological matrices. Biomed Chromatogr. 2011;25(1–2):258–77.

    Article  PubMed  Google Scholar 

  63. Li W, et al. LC-MS bioanalysis of ester prodrugs and other esterase labile molecules. In: Li W, Zhang J and Tse FLS (eds.) Handbook of LC-MS Bioanalysis. Wiley; 2013. pp. 429–445.

  64. Zeng J, et al. Simultaneous determination of a selective adenosine 2A agonist, BMS-068645, and its acid metabolite in human plasma by liquid chromatography-tandem mass spectrometry—evaluation of the esterase inhibitor, diisopropyl fluorophosphate, in the stabilization of a labile ester-containing drug. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;852(1–2):77–84.

    Article  CAS  PubMed  Google Scholar 

  65. Fung EN, et al. Effective screening approach to select esterase inhibitors used for stabilizing ester-containing prodrugs analyzed by LC–MS/MS. Bioanalysis. 2010;2(4):733–43.

    Article  CAS  PubMed  Google Scholar 

  66. Ratnatilaka Na Bhuket P, et al. Simultaneous determination of curcumin diethyl disuccinate and its active metabolite curcumin in rat plasma by LC–MS/MS: application of esterase inhibitors in the stabilization of an ester-containing prodrug. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1033–1034:301–10.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pornchai Rojsitthisak.

Ethics declarations

Funding

The preparation of this manuscript was supported by the Annual Research Fund of the Faculty of Pharmaceutical Sciences, Chulalongkorn University (P. Rojsitthisak), the Ratchadapiseksompoch Endowment Fund of Chulalongkorn University (CU-58-003-HR and CU-59-031-AM) (P. Rojsitthisak), the National Research University Project, Office of Higher Education Commission (NRU59-047-AM) (P. Rojsitthisak) and the scholarship from the Graduate School, Chulalongkorn University to commemorate the 72nd anniversary of his Majesty King Bhumibala Aduladeja (P. Ratnatilaka Na Bhuket).

Conflicts of interest

Pahweenvaj Ratnatilaka Na Bhuket, Asma El-Magboub, Ian S. Haworth and Pornchai Rojsitthisak declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ratnatilaka Na Bhuket, P., El-Magboub, A., Haworth, I.S. et al. Enhancement of Curcumin Bioavailability Via the Prodrug Approach: Challenges and Prospects. Eur J Drug Metab Pharmacokinet 42, 341–353 (2017). https://doi.org/10.1007/s13318-016-0377-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-016-0377-7

Keywords

Navigation