Skip to main content

Advertisement

Log in

Oxystressed tumor microenvironment potentiates epithelial to mesenchymal transition and alters cellular bioenergetics towards cancer progression

  • Original Article
  • Published:
Tumor Biology

Abstract

During tumorigenesis, cancer cells generate complex, unresolved interactions with the surrounding oxystressed cellular milieu called tumor microenvironment (TM) that favors spread of cancer to other body parts. This dissemination of cancer cells from the primary tumor site is the main clinical challenge in cancer treatment. In addition, the significance of enhanced oxidative stress in TM during cancer progression still remains elusive. Thus, the present study was performed to investigate the molecular and cytoskeletal alterations in breast cancer cells associated with oxystressed TM that potentiates metastasis. Our results showed that depending on the extent of oxidative stress in TM, cancer cells exhibited enhanced migration and survival with reduction of chemosensitivity. Corresponding ultrastructural analysis showed radical cytoskeletal modifications that reorganize cell-cell interactions fostering transition of epithelial cells to mesenchymal morphology (EMT) marking metastasis, which was reversed upon antioxidant treatment. Decreased E-cadherin and increased vimentin, Twist1/2 expression corroborated the initiation of EMT in oxystressed TM-influenced cells. Further evaluation of cellular energetics demonstrated significant metabolic reprogramming with inclination towards glucose or external glutamine from TM as energy source depending on the breast cancer cell type. These observations prove the elemental role of oxystressed TM in cancer progression, initiating EMT and metabolic reprogramming. Further cell-type specific metabolomic analysis would unravel the alternate mechanisms in cancer progression for effective therapeutic intervention.

Schematic representation of the study and proposed mechanism of oxystressed TM influenced cancer progression. Cancer cells exhibit a close association with tumor microenvironment (TM), and oxystressed TM enhances cancer cell migration and survival and reduces chemosensitivity. Oxystressed TM induces dynamic cytomorphological variations, alterations in expression patterns of adhesion markers, redox homeostasis, and metabolic reprogramming that supports epithelial to mesenchymal transition and cancer progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cummings MC, Simpson PT, Reid LE, et al. Metastatic progression of breast cancer: insights from 50 years of autopsies. J Pathol. 2014;232(1):23–31.

    Article  CAS  PubMed  Google Scholar 

  2. Soysal SD, Tzankov A, Muenst SE. Role of the tumor microenvironment in breast cancer. Pathobiology. 2015;82(3–4):142–52.

    Article  CAS  PubMed  Google Scholar 

  3. Tlsty TD, Coussens LM. Tumor stroma and regulation of cancer development. Annu Rev Pathol. 2006;1:119–50.

    Article  CAS  PubMed  Google Scholar 

  4. Maltby S, Khazaie K, McNagny K. Mast cells in tumor growth: angiogenesis, tissue remodelling and immune-modulation. Biochim Biophys Acta. 2009;1796:19–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Policastro LL, Ibañez IL, Notcovich C, et al. The tumor microenvironment: characterization, redox considerations, and novel approaches for reactive oxygen species-targeted gene therapy. Antioxid Redox Signal. 2013;19(8):854–95.

    Article  CAS  PubMed  Google Scholar 

  6. Lisanti MP, Martinez-Outschoorn UE, Lin Z, et al. Hydrogen peroxide fuels aging, inflammation, cancer metabolism and metastasis: the seed and soil also needs fertilizer. Cell Cycle. 2011;10(15):2440–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pizzimenti S, Toaldo C, Pettazzoni P, et al. The two-faced effects of reactive oxygen species and the lipid peroxidation product 4-hydroxynonenal in the hallmarks of cancer. Cancers (Basel). 2010;2(2):338–63.

    Article  CAS  Google Scholar 

  8. Dolled-Filhart MP, Rimm DL, Stroobant P. Quantitative in situ cancer proteomics: molecular pathology comes of age with automated tissue microarray analysis. Pers Med. 2005;2:291–300.

    Article  CAS  Google Scholar 

  9. Pavlides S, Vera I, Gandara R, et al. Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis. Antioxid Redox Signal. 2012;16(11):1264–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Seluanov A, Vaidya A, Gorbunova V. Establishing primary adult fibroblast cultures from rodents. J Vis Exp. 2010;44:2033.

    Google Scholar 

  11. Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974;47(3):469–74.

    Article  CAS  PubMed  Google Scholar 

  12. Sinha AK. Colorimetric assay of catalase. Anal Biochem. 1972;47:389–94.

    Article  CAS  PubMed  Google Scholar 

  13. Rotruck JT, Pope AL, Ganther HE, et al. Selenium: biochemical role as a component of glutathione peroxidase. Science. 1973;179(4073):588–90.

    Article  CAS  PubMed  Google Scholar 

  14. Yang C, Liu Y, Lemmon MA, Kazanietz MG. Essential role for Rac in heregulin beta 1 mitogenic signaling: a mechanism that involves epidermal growth factor receptor and is independent of ErbB4. Mol Cell Biol. 2006;26:831–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moss DW, Henderson AR. Determination of lactate dehydrogenase activity by measurement of NADH consumption. Second edition ed. Tietz Text Book. Clin Chem Phila. 1994; p 816–818.

  16. Wagstaff JL, Masterton RJ, Povey JF, et al. 1H NMR spectroscopy profiling of metabolic reprogramming of Chinese hamster ovary cells upon a temperature shift during culture. PLoS One. 2013;8(10):e77195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Spano D, Zollo M. Tumor microenvironment: a main actor in the metastasis process. Clin Exp Metastasis. 2012;29(4):81–95.

    Article  Google Scholar 

  18. Hagemann T, Lawrence T, McNeish I, et al. Re-educating tumor-associated macrophages by targeting NF-kappaB. J Exp Med. 2015;205(6):1261–8.

    Article  Google Scholar 

  19. Pyonteck SM, Akkari L, Schuhmacher AJ, et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med. 2013;19(10):1264–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jezierska-Drutel A, Rosenzweig SA, Neumann CA. Role of oxidative stress and the microenvironment in breast cancer development and progression. Adv Cancer Res. 2013;119:107–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liou GY, Storz P. Reactive oxygen species in cancer. Free Radic Res. 2010;44(5):479–96.

    Article  CAS  PubMed  Google Scholar 

  22. López-Lázaro M. Dual role of hydrogen peroxide in cancer: possible relevance to cancer chemoprevention and therapy. Cancer Lett. 2007;252(1):1–8.

    Article  PubMed  Google Scholar 

  23. Wlassoff WA, Albright CD, Sivashinski MS, et al. Hydrogen peroxide overproduced in breast cancer cells can serve as an anticancer prodrug generating apoptosis-stimulating hydroxyl radicals under the effect of tamoxifen-ferrocene conjugate. J Pharm Pharmacol. 2007;59(11):1549–53.

    Article  PubMed  Google Scholar 

  24. Pickering AM, Vojtovich L, Tower J, Davies KJA. Oxidative stress adaptation with acute, chronic and repeated stress. Free Radic Biol Med. 2013;55:109–18.

    Article  CAS  PubMed  Google Scholar 

  25. Kundu N, Zhang S, Fulton AM. Sublethal oxidative stress inhibits tumor cell adhesion and enhances experimental metastasis of murine mammary carcinoma. Clin Exp Metastasis. 1995;13(1):16–22.

    Article  CAS  PubMed  Google Scholar 

  26. Mahalingaiah PK, Singh KP. Chronic oxidative stress increases growth and tumorigenic potential of MCF-7 breast cancer cells. PLoS One. 2014;9(1):e87371.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Comito G, Giannoni E, Di Gennaro P, et al. Stromal fibroblasts synergize with hypoxic oxidative stress to enhance melanoma aggressiveness. Cancer Lett. 2012;324:31–41.

    Article  CAS  PubMed  Google Scholar 

  28. Chanmee T, Ontong P, Konno K, Itano N. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel). 2014;6(3):1670–90.

    Article  CAS  Google Scholar 

  29. Assoian RK, Fleurdelys BE, Stevenson HC, et al. Expression and secretion of type beta transforming growth factor by activated human macrophages. Proc Natl Acad Sci U S A. 1987;84:6020–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Holt DJ, Chamberlain LM, Grainger DW. Cell-cell signaling in co-cultures of macrophages and fibroblasts. Biomaterials. 2010;31(36):9382–94.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rajah TT, Rambo DJ, Dmytryk JJ, Pento JT. Influence of antiestrogens on NIH-3T3-fibroblast-induced motility of breast cancer cells. Chemotherapy. 2001;47(1):56–69.

    Article  CAS  PubMed  Google Scholar 

  32. Storz P. Reactive oxygen species in tumor progression. Front Biosci. 2005;10:1881–96.

    Article  CAS  PubMed  Google Scholar 

  33. Rhee SG, Kang SW, Jeong W, et al. Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr Opin Cell Biol. 2005;17:183–9.

    Article  CAS  PubMed  Google Scholar 

  34. Cao C, Lu S, Kivlin R, et al. AMP-activated protein kinase contributes to UV- and H2O2-induced apoptosis in human skin keratinocytes. J Biol Chem. 2008;283:28897–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Copin JC, Gasche Y, Chan PH. Overexpression of copper/zinc superoxide dismutase does not prevent neonatal lethality in mutant mice that lack manganese superoxide dismutase. Free Radic Biol Med. 2000;28(10):1571–6.

    Article  CAS  PubMed  Google Scholar 

  36. Michiels C, Raes M, Toussaint O, Remacle J. Importance of Se-glutathione peroxidase, catalase and Cu/Zn-SOD for cell-survival against oxidative stress. Free Radic Biol Med. 1994;17:235–48.

    Article  CAS  PubMed  Google Scholar 

  37. Trejo-Vargas A, Hernández-Mercado E, Ordóñez-Razo RM, et al. Bik subcellular localization in response to oxidative stress induced by chemotherapy, in two different breast cancer cell lines and a non-tumorigenic epithelial cell line. J Appl Toxicol. 2015;35(11):1262–70.

    Article  CAS  PubMed  Google Scholar 

  38. Werner E, Werb Z. Integrins engage mitochondrial function for signal transduction by a mechanism dependent on rho GTPases. J Cell Biol. 2002;158:357–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Harfouche R, Malak NA, Brandes RP, et al. Roles of reactive oxygen species in angiopoietin-1/tie-2 receptor signaling. FASEB J. 2005;19(12):1728–30.

    CAS  PubMed  Google Scholar 

  40. Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008;8(10):755–68.

    Article  CAS  PubMed  Google Scholar 

  41. Landriscina M, Maddalena F, Laudiero G, Esposito F. Adaptation to oxidative stress, chemoresistance and cell survival. Antioxid Redox Signal. 2009;11(11):2701–16.

    Article  CAS  PubMed  Google Scholar 

  42. Barbouti A, Amorgianiotis C, Kolettas E, et al. Hydrogen peroxide inhibits caspase-dependent apoptosis by inactivating procaspase-9 in an iron-dependent manner. Free Radic Biol Med. 2007;43:1377–87.

    Article  CAS  PubMed  Google Scholar 

  43. Sotgia F, Martinez-Outschoorn UE, Lisanti MP. Mitochondrial oxidative stress drives tumor progression and metastasis: should we use antioxidants as a key component of cancer treatment and prevention? BMC Med. 2011;9:62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Albini A, D’Agostini F, Giunciuglio D, et al. Inhibition of invasion, gelatinase activity, tumor take and metastasis of malignant cells by N-acetylcysteine. Int J Cancer. 1995;61:121–9.

    Article  CAS  PubMed  Google Scholar 

  45. Jaafar H, Sharif SE, Murtey MD. Distinctive features of advancing breast cancer cells and interactions with surrounding stroma observed under the scanning electron microscope. Asian Pac J Cancer Prev. 2012;13:1305–10.

    Article  PubMed  Google Scholar 

  46. Rappa G, Green TM, Karbanová J, et al. Tetraspanin CD9 determines invasiveness and tumorigenicity of human breast cancer cells. Oncotarget. 2015;6(10):7970–91.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sethi S, Sarkar FH, Ahmed Q, et al. Molecular markers of epithelial-to-mesenchymal transition are associated with tumor aggressiveness in breast carcinoma. Transl Oncol. 2011;4(4):222–6.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Krawczyk N, Meier-Stiegen F, Banys M, et al. Expression of stem cell and epithelial-mesenchymal transition markers in circulating tumor cells of breast cancer patients. Biomed Res Int. 2014:415721.

  49. Winter MJ, Nagelkerken B, Mertens AE, et al. Expression of ep-CAM shifts the state of cadherin-mediated adhesions from strong to weak. Exp Cell Res. 2003;285:50–8.

    Article  CAS  PubMed  Google Scholar 

  50. Maetzel D, Denzel S, Mack B, et al. Nuclear signalling by tumour-associated antigen EpCAM. Nat Cell Biol. 2009;11:162–71.

    Article  CAS  PubMed  Google Scholar 

  51. Gastl G, Spizzo G, Obrist P, Dunser M, Mikuz G. Ep-CAM overexpression in breast cancer as a predictor of survival. Lancet. 2000;356:1981–2.

    Article  CAS  PubMed  Google Scholar 

  52. Sceneay J, Liu MC, Chen A, et al. The antioxidant N-acetyl cysteine prevents HIF-1 stabilization under hypoxia in vitro but does not affect tumorigenesis in multiple breast cancer models in vivo. PLoS One. 2013;8(6):e66388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  54. Halama A, Guerrouahen BS, Pasquier J, et al. Metabolic signatures differentiate ovarian from colon cancer cell lines. J Transl Med. 2015;13:223.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wen H, An YJ, Xu WJ, et al. Real-time monitoring of cancer cell metabolism and effects of an anticancer agent using 2D in-cell NMR spectroscopy. Angew Chem Int Ed Eng. 2015;54(18):5374–7.

    Article  CAS  Google Scholar 

  56. Wise DR, Thompson CB. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci. 2010;35:427–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lefort N, Brown A, Lloyd V, et al. 1H NMR metabolomics analysis of the effect of dichloroacetate and allopurinol on breast cancers. J Pharm Biomed Anal. 2014;93:77–85.

    Article  CAS  PubMed  Google Scholar 

  58. Lu W, Pelicano H, Huang P. Cancer metabolism: is glutamine sweeter than glucose? Cancer Cell. 2010;18:199–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by DST-SERB (No. SB/EMEQ-082/2013) Project and University Grants Commission [UGC F. No. 37–109/2009 (SR)], India. SD was supported by Lady Tata Memorial Research Fellowship 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Premkumar Kumpati.

Ethics declarations

Conflicts of interest

None

Electronic supplementary material

ESM 1

(PDF 670 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sridaran, D., Ramamoorthi, G., MahaboobKhan, R. et al. Oxystressed tumor microenvironment potentiates epithelial to mesenchymal transition and alters cellular bioenergetics towards cancer progression. Tumor Biol. 37, 13307–13322 (2016). https://doi.org/10.1007/s13277-016-5224-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5224-6

Keywords

Navigation