Skip to main content
Log in

Comparison of meta-analyses among elastosonography (ES) and positron emission tomography/computed tomography (PET/CT) imaging techniques in the application of prostate cancer diagnosis

  • Published:
Tumor Biology

Abstract

The early diagnosis of prostate cancer (PCa) appears to be of vital significance for the provision of appropriate treatment programs. Even though several sophisticated imaging techniques such as positron emission tomography/computed tomography (PET/CT) and elastosonography (ES) have already been developed for PCa diagnosis, the diagnostic accuracy of these imaging techniques is still controversial to some extent. Therefore, a comprehensive meta-analysis in this study was performed to compare the accuracy of various diagnostic imaging methods for PCa, including 11C-choline PET/CT, 11C-acetate PET/CT, 18F-fluorocholine PET/CT, 18F-fluoroglucose PET/CT, transrectal real-time elastosonography (TRTE), and shear-wave elastosonography (SWE). The eligible studies were identified through systematical searching for the literature in electronic databases including PubMed, Cochrane, and Web of Science. On the basis of the fixed-effects model, the pooled sensitivity (SEN), specificity (SPE), and area under the receiver operating characteristics curve (AUC) were calculated to estimate the diagnostic accuracy of 11C-choline PET/CT, 11C-acetate PET/CT, 18F-fluorocholine (FCH) PET/CT, 18F-fluoroglucose (FDG) PET/CT, TRTE, and SWE. All the statistical analyses were conducted with R language Software. The present meta-analysis incorporating a total of 82 studies demonstrated that the pooled sensitivity of the six imaging techniques were sorted as follows: SWE > 18F-FCH PET/CT > 11C-choline PET/CT > TRTE > 11C-acetate PET/CT > 18F-FDG PET/CT; the pooled specificity were also compared: SWE > 18F-FCH PET/CT > 11C-choline PET/CT > TRTE > 18F-FDG PET/CT > 11C-acetate PET/CT; finally, the pooled diagnostic accuracy of the six imaging techniques based on AUC were ranked as below: SWE > 18F-FCH PET/CT > 11C-choline PET/CT > TRTE > 11C-acetate PET/CT > 18F-FDG PET/CT. SWE and 18F-FCH PET/CT imaging could offer more assistance in the early diagnosis of PCa than any other studied imaging techniques. However, the diagnostic ranking of the six imaging techniques might not be applicable to the clinical phase due to the shortage of stratified analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA: Cancer J Clinicians. 2015;65:5–29.

    Article  Google Scholar 

  2. Halpern EJ, Frauscher F, Rosenberg M, Gomella LG. Directed biopsy during contrast-enhanced sonography of the prostate. AJR Am J Roentgenol. 2002;178:915–9.

    Article  PubMed  Google Scholar 

  3. Correas JM, Tissier AM, Khairoune A, Vassiliu V, Mejean A, Helenon O, et al. Prostate cancer: diagnostic performance of real-time shear-wave elastography. Radiology. 2015;275:280–9.

    Article  PubMed  Google Scholar 

  4. Hodgson R, Huang YT, Steinke K, Ravi Kumar AS. FDG-PET/CT in evaluation and prognostication of primary prostate lymphoma. Clin Nucl Med. 2010;35:418–20.

    Article  PubMed  Google Scholar 

  5. Reske SN, Blumstein NM, Neumaier B, Gottfried HW, Finsterbusch F, Kocot D, et al. Imaging prostate cancer with 11C-choline PET/CT. J Nuclear Med : Off Public, Soc Nuclear Med. 2006;47:1249–54.

    CAS  Google Scholar 

  6. Beheshti M, Vali R, Langsteger W. [18F]fluorocholine PET/CT in the assessment of bone metastases in prostate cancer. Eur J Nucl Med Mol Imaging. 2007;34:1316–7. author reply 1318-1319.

    Article  PubMed  Google Scholar 

  7. Jambor I, Borra R, Kemppainen J, Lepomaki V, Parkkola R, Dean K, et al. Functional imaging of localized prostate cancer aggressiveness using 11C-acetate PET/CT and 1H-MR spectroscopy. J Nuclear Med : Off Public, Soc Nuclear Med. 2010;51:1676–83.

    Article  CAS  Google Scholar 

  8. Heck MM, Souvatzoglou M, Retz M, Nawroth R, Kubler H, Maurer T, et al. Prospective comparison of computed tomography, diffusion-weighted magnetic resonance imaging and [11C]choline positron emission tomography/computed tomography for preoperative lymph node staging in prostate cancer patients. Eur J Nucl Med Mol Imaging. 2014;41:694–701.

    Article  PubMed  Google Scholar 

  9. Mitchell CR, Lowe VJ, Rangel LJ, Hung JC, Kwon ED, Karnes RJ. Operational characteristics of (11)C-choline positron emission tomography/computerized tomography for prostate cancer with biochemical recurrence after initial treatment. J Urol. 2013;189:1308–13.

    Article  PubMed  Google Scholar 

  10. Picchio M, Spinapolice EG, Fallanca F, Crivellaro C, Giovacchini G, Gianolli L, et al. [11C]choline PET/CT detection of bone metastases in patients with PSA progression after primary treatment for prostate cancer: comparison with bone scintigraphy. Eur J Nucl Med Mol Imaging. 2012;39:13–26.

    Article  CAS  PubMed  Google Scholar 

  11. Xu G, Feng L, Yao M, Wu J, Guo L, Yao X, et al. A new 5-grading score in the diagnosis of prostate cancer with real-time elastography. Int J Clin Experiment Pathol. 2014;7:4128–35.

    Google Scholar 

  12. Brock M, Eggert T, Palisaar RJ, Roghmann F, Braun K, Loppenberg B, et al. Multiparametric ultrasound of the prostate: adding contrast enhanced ultrasound to real-time elastography to detect histopathologically confirmed cancer. J Urol. 2013;189:93–8.

    Article  PubMed  Google Scholar 

  13. Jambor I, Borra R, Kemppainen J, Lepomaki V, Parkkola R, Dean K, et al. Improved detection of localized prostate cancer using co-registered MRI and 11C-acetate PET/CT. Eur J Radiol. 2012;81:2966–72.

    Article  PubMed  Google Scholar 

  14. Wachter S, Tomek S, Kurtaran A, Wachter-Gerstner N, Djavan B, Becherer A, et al. 11C-acetate positron emission tomography imaging and image fusion with computed tomography and magnetic resonance imaging in patients with recurrent prostate cancer. J Clin Oncol. 2006;24:2513–9.

    Article  PubMed  Google Scholar 

  15. Mohsen B, Giorgio T, Rasoul ZS, Werner L, Ali GR, Reza DK, et al. Application of C-11-acetate positron-emission tomography (PET) imaging in prostate cancer: systematic review and meta-analysis of the literature. BJU Int. 2013;112:1062–72.

    Article  CAS  PubMed  Google Scholar 

  16. Umbehr MH, Muntener M, Hany T, Sulser T, Bachmann LM. The role of 11C-choline and 18F-fluorocholine positron emission tomography (PET) and PET/CT in prostate cancer: a systematic review and meta-analysis. Eur Urol. 2013;64:106–17.

    Article  PubMed  Google Scholar 

  17. Salomon G. Transrectal sonoelastography in the detection of prostate cancers: a meta-analysis. BJU Int. 2012;110:E621.

    Article  PubMed  Google Scholar 

  18. Fricke E, Machtens S, Hofmann M, van den Hoff J, Bergh S, Brunkhorst T, et al. Positron emission tomography with 11C-acetate and 18F-FDG in prostate cancer patients. Eur J Nucl Med Mol Imaging. 2003;30:607–11.

    Article  CAS  PubMed  Google Scholar 

  19. Buchegger F, Garibotto V, Zilli T, Allainmat L, Jorcano S, Vees H, et al. First imaging results of an intraindividual comparison of (11)C-acetate and (18)F-fluorocholine PET/CT in patients with prostate cancer at early biochemical first or second relapse after prostatectomy or radiotherapy. Eur J Nucl Med Mol Imaging. 2014;41:68–78.

    Article  CAS  PubMed  Google Scholar 

  20. Vees H, Buchegger F, Albrecht S, Khan H, Husarik D, Zaidi H, et al. 18F-choline and/or 11C-acetate positron emission tomography: detection of residual or progressive subclinical disease at very low prostate-specific antigen values (<1 ng/ml) after radical prostatectomy. BJU Int. 2007;99:1415–20.

    Article  CAS  PubMed  Google Scholar 

  21. Kitajima K, Murphy RC, Nathan MA, Froemming AT, Hagen CE, Takahashi N, et al. Detection of recurrent prostate cancer after radical prostatectomy: comparison of 11C-choline PET/CT with pelvic multiparametric mr imaging with endorectal coil. J Nuclear Med : Off Public, Soc Nuclear Med. 2014;55:223–32.

    Article  CAS  Google Scholar 

  22. Jilg CA, Schultze-Seemann W, Drendel V, Vach W, Wieser G, Krauss T, et al. Detection of lymph node metastasis in patients with nodal prostate cancer relapse using (18)F/(11)C-choline positron emission tomography/computerized tomography. J Urol. 2014;192:103–10.

    Article  PubMed  Google Scholar 

  23. Giovacchini G, Picchio M, Garcia-Parra R, Mapelli P, Briganti A, Montorsi F, et al. [11C]choline positron emission tomography/computerized tomography for early detection of prostate cancer recurrence in patients with low increasing prostate specific antigen. J Urol. 2013;189:105–10.

    Article  PubMed  Google Scholar 

  24. Van den Bergh L, Koole M, Isebaert S, Joniau S, Deroose CM, Oyen R, et al. Is there an additional value of (1)(1)C-choline PET-CT to T2-weighted MRI images in the localization of intraprostatic tumor nodules? Int J Radiat Oncol Biol Phys. 2012;83:1486–92.

    Article  PubMed  Google Scholar 

  25. Fuccio C, Schiavina R, Castellucci P, Rubello D, Martorana G, Celli M, et al. Androgen deprivation therapy influences the uptake of 11C-choline in patients with recurrent prostate cancer: the preliminary results of a sequential PET/CT study. Eur J Nucl Med Mol Imaging. 2011;38:1985–9.

    Article  CAS  PubMed  Google Scholar 

  26. Contractor K, Challapalli A, Barwick T, Winkler M, Hellawell G, Hazell S, et al. Use of [11C]choline PET-CT as a noninvasive method for detecting pelvic lymph node status from prostate cancer and relationship with choline kinase expression. Clin Cancer Res. 2011;17:7673–83.

    Article  CAS  PubMed  Google Scholar 

  27. Budiharto T, Joniau S, Lerut E, Van den Bergh L, Mottaghy F, Deroose CM, et al. Prospective evaluation of 11C-choline positron emission tomography/computed tomography and diffusion-weighted magnetic resonance imaging for the nodal staging of prostate cancer with a high risk of lymph node metastases. Eur Urol. 2011;60:125–30.

    Article  PubMed  Google Scholar 

  28. Bertagna F, Abuhilal M, Bosio G, Simeone C, Rossini P, Pizzocaro C, et al. Role of (1)(1)C-choline positron emission tomography/computed tomography in evaluating patients affected by prostate cancer with suspected relapse due to prostate-specific antigen elevation. Jpn J Radiol. 2011;29:394–404.

    Article  CAS  PubMed  Google Scholar 

  29. Winter A, Uphoff J, Henke RP, Wawroschek F. First results of [11C]choline PET/CT-guided secondary lymph node surgery in patients with PSA failure and single lymph node recurrence after radical retropubic prostatectomy. Urol Int. 2010;84:418–23.

    Article  PubMed  Google Scholar 

  30. Watanabe H, Kanematsu M, Kondo H, Kako N, Yamamoto N, Yamada T, et al. Preoperative detection of prostate cancer: a comparison with 11C-choline PET, 18F-fluorodeoxyglucose PET and MR imaging. J Magnet Reson Imag : JMRI. 2010;31:1151–6.

    Article  Google Scholar 

  31. Giovacchini G, Picchio M, Scattoni V, Garcia Parra R, Briganti A, Gianolli L, et al. PSA doubling time for prediction of [(11)C]choline PET/CT findings in prostate cancer patients with biochemical failure after radical prostatectomy. Eur J Nucl Med Mol Imaging. 2010;37:1106–16.

    Article  CAS  PubMed  Google Scholar 

  32. Giovacchini G, Picchio M, Coradeschi E, Bettinardi V, Gianolli L, Scattoni V, et al. Predictive factors of [(11)C]choline PET/CT in patients with biochemical failure after radical prostatectomy. Eur J Nucl Med Mol Imaging. 2010;37:301–9.

    Article  PubMed  Google Scholar 

  33. Breeuwsma AJ, Pruim J, van den Bergh AC, Leliveld AM, Nijman RJ, Dierckx RA, et al. Detection of local, regional, and distant recurrence in patients with PSA relapse after external-beam radiotherapy using (11)C-choline positron emission tomography. Int J Radiat Oncol Biol Phys. 2010;77:160–4.

    Article  PubMed  Google Scholar 

  34. Winter A, Uphoff J, Henke RP, Wawroschek F. [First results of PET/CT-guided secondary lymph node surgery on patients with a PSA relapse after radical prostatectomy]. Aktuelle Urol. 2009;40:294–9.

    Article  PubMed  Google Scholar 

  35. Rinnab L, Simon J, Hautmann RE, Cronauer MV, Hohl K, Buck AK, et al. [(11)C]choline PET/CT in prostate cancer patients with biochemical recurrence after radical prostatectomy. World J Urol. 2009;27:619–25.

    Article  CAS  PubMed  Google Scholar 

  36. Schiavina R, Scattoni V, Castellucci P, Picchio M, Corti B, Briganti A, et al. 11C-choline positron emission tomography/computerized tomography for preoperative lymph-node staging in intermediate-risk and high-risk prostate cancer: comparison with clinical staging nomograms. Eur Urol. 2008;54:392–401.

    Article  PubMed  Google Scholar 

  37. Reske SN, Blumstein NM, Glatting G. [11C]choline PET/CT imaging in occult local relapse of prostate cancer after radical prostatectomy. Eur J Nucl Med Mol Imaging. 2008;35:9–17.

    Article  PubMed  Google Scholar 

  38. Li X, Liu Q, Wang M, Jin X, Yao S, Liu S, et al. C-11 choline PET/CT imaging for differentiating malignant from benign prostate lesions. Clin Nucl Med. 2008;33:671–6.

    Article  CAS  PubMed  Google Scholar 

  39. Igerc I, Kohlfurst S, Gallowitsch HJ, Matschnig S, Kresnik E, Gomez-Segovia I, et al. The value of 18F-choline PET/CT in patients with elevated PSA-level and negative prostate needle biopsy for localisation of prostate cancer. Eur J Nucl Med Mol Imaging. 2008;35:976–83.

    Article  CAS  PubMed  Google Scholar 

  40. Giovacchini G, Picchio M, Coradeschi E, Scattoni V, Bettinardi V, Cozzarini C, et al. [(11)C]choline uptake with PET/CT for the initial diagnosis of prostate cancer: relation to PSA levels, tumour stage and anti-androgenic therapy. Eur J Nucl Med Mol Imaging. 2008;35:1065–73.

    Article  CAS  PubMed  Google Scholar 

  41. Testa C, Schiavina R, Lodi R, Salizzoni E, Corti B, Farsad M, et al. Prostate cancer: sextant localization with MR imaging, MR spectroscopy, and 11C-choline PET/CT. Radiology. 2007;244:797–806.

    Article  PubMed  Google Scholar 

  42. Scher B, Seitz M, Albinger W, Tiling R, Scherr M, Becker HC, et al. Value of 11C-choline PET and PET/CT in patients with suspected prostate cancer. Eur J Nucl Med Mol Imaging. 2007;34:45–53.

    Article  PubMed  Google Scholar 

  43. Scattoni V, Picchio M, Suardi N, Messa C, Freschi M, Roscigno M, et al. Detection of lymph-node metastases with integrated [11C]choline PET/CT in patients with PSA failure after radical retropubic prostatectomy: results confirmed by open pelvic-retroperitoneal lymphadenectomy. Eur Urol. 2007;52:423–9.

    Article  PubMed  Google Scholar 

  44. Rinnab L, Mottaghy FM, Blumstein NM, Reske SN, Hautmann RE, Hohl K, et al. Evaluation of [11C]-choline positron-emission/computed tomography in patients with increasing prostate-specific antigen levels after primary treatment for prostate cancer. BJU Int. 2007;100:786–93.

    Article  CAS  PubMed  Google Scholar 

  45. Martorana G, Schiavina R, Corti B, Farsad M, Salizzoni E, Brunocilla E, et al. 11C-choline positron emission tomography/computerized tomography for tumor localization of primary prostate cancer in comparison with 12-core biopsy. J Urol. 2006;176:954–60. discussion 960.

    Article  CAS  PubMed  Google Scholar 

  46. Farsad M, Schiavina R, Castellucci P, Nanni C, Corti B, Martorana G, et al. Detection and localization of prostate cancer: correlation of (11)C-choline PET/CT with histopathologic step-section analysis. J Nuclear Med : Off Public, Soc Nuclear Med. 2005;46:1642–9.

    CAS  Google Scholar 

  47. Sutinen E, Nurmi M, Roivainen A, Varpula M, Tolvanen T, Lehikoinen P, et al. Kinetics of [(11)C]choline uptake in prostate cancer: a PET study. Eur J Nucl Med Mol Imaging. 2004;31:317–24.

    Article  CAS  PubMed  Google Scholar 

  48. Kotzerke J, Prang J, Neumaier B, Volkmer B, Guhlmann A, Kleinschmidt K, et al. Experience with carbon-11 choline positron emission tomography in prostate carcinoma. Eur J Nucl Med. 2000;27:1415–9.

    Article  CAS  PubMed  Google Scholar 

  49. Poulsen MH, Bouchelouche K, Hoilund-Carlsen PF, Petersen H, Gerke O, Steffansen SI, et al. [18F]fluoromethylcholine (FCH) positron emission tomography/computed tomography (PET/CT) for lymph node staging of prostate cancer: a prospective study of 210 patients. BJU Int. 2012;110:1666–71.

    Article  CAS  PubMed  Google Scholar 

  50. Panebianco V, Sciarra A, Lisi D, Galati F, Buonocore V, Catalano C, et al. Prostate cancer: 1HMRS-DCEMR at 3T versus [(18)F]choline PET/CT in the detection of local prostate cancer recurrence in men with biochemical progression after radical retropubic prostatectomy (RRP). Eur J Radiol. 2012;81:700–8.

    Article  PubMed  Google Scholar 

  51. Oprea-Lager DE, Vincent AD, van Moorselaar RJ, Gerritsen WR, van den Eertwegh AJ, Eriksson J, et al. Dual-phase PET-CT to differentiate [18F]fluoromethylcholine uptake in reactive and malignant lymph nodes in patients with prostate cancer. PLoS One. 2012;7:e48430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. McCarthy M, Siew T, Campbell A, Lenzo N, Spry N, Vivian J, et al. (1)(8)F-fluoromethylcholine (FCH) PET imaging in patients with castration-resistant prostate cancer: prospective comparison with standard imaging. Eur J Nucl Med Mol Imaging. 2011;38:14–22.

    Article  PubMed  Google Scholar 

  53. Langsteger W, Balogova S, Huchet V, Beheshti M, Paycha F, Egrot C, et al. Fluorocholine (18F) and sodium fluoride (18F) PET/CT in the detection of prostate cancer: prospective comparison of diagnostic performance determined by masked reading. Q J Nucl Med Mol Imag. 2011;55:448–57.

    CAS  Google Scholar 

  54. Steuber T, Schlomm T, Heinzer H, Zacharias M, Ahyai S, Chun KF, et al. [F(18)]-fluoroethylcholine combined in-line PET-CT scan for detection of lymph-node metastasis in high risk prostate cancer patients prior to radical prostatectomy: preliminary results from a prospective histology-based study. Eur J Cancer. 2010;46:449–55.

    Article  CAS  PubMed  Google Scholar 

  55. Poulsen MH, Bouchelouche K, Gerke O, Petersen H, Svolgaard B, Marcussen N, et al. [18F]-fluorocholine positron-emission/computed tomography for lymph node staging of patients with prostate cancer: preliminary results of a prospective study. BJU Int. 2010;106:639–43. discussion 644.

    Article  PubMed  Google Scholar 

  56. Beheshti M, Imamovic L, Broinger G, Vali R, Waldenberger P, Stoiber F, et al. 18F choline PET/CT in the preoperative staging of prostate cancer in patients with intermediate or high risk of extracapsular disease: a prospective study of 130 patients. Radiology. 2010;254:925–33.

    Article  PubMed  Google Scholar 

  57. Beheshti M, Vali R, Waldenberger P, Fitz F, Nader M, Hammer J, et al. The use of F-18 choline PET in the assessment of bone metastases in prostate cancer: correlation with morphological changes on CT. Molec Imag Biol : MIB :Off Public Acad Molec Imag. 2009;11:446–54.

    Article  Google Scholar 

  58. Pelosi E, Arena V, Skanjeti A, Pirro V, Douroukas A, Pupi A, et al. Role of whole-body 18F-choline PET/CT in disease detection in patients with biochemical relapse after radical treatment for prostate cancer. La Radiol Med. 2008;113:895–904.

    Article  CAS  Google Scholar 

  59. Husarik DB, Miralbell R, Dubs M, John H, Giger OT, Gelet A, et al. Evaluation of [(18)F]-choline PET/CT for staging and restaging of prostate cancer. Eur J Nucl Med Mol Imaging. 2008;35:253–63.

    Article  PubMed  Google Scholar 

  60. Hacker A, Jeschke S, Leeb K, Prammer K, Ziegerhofer J, Sega W, et al. Detection of pelvic lymph node metastases in patients with clinically localized prostate cancer: comparison of [18F]fluorocholine positron emission tomography-computerized tomography and laparoscopic radioisotope guided sentinel lymph node dissection. J Urol. 2006;176:2014–8. discussion 2018-2019.

    Article  PubMed  Google Scholar 

  61. Kwee SA, Coel MN, Lim J, Ko JP. Prostate cancer localization with 18fluorine fluorocholine positron emission tomography. J Urol. 2005;173:252–5.

    Article  PubMed  Google Scholar 

  62. Haseebuddin M, Dehdashti F, Siegel BA, Liu J, Roth EB, Nepple KG, et al. 11C-acetate PET/CT before radical prostatectomy: nodal staging and treatment failure prediction. J Nuclear Med : Off Public, Soc Nuclear Med. 2013;54:699–706.

    Article  CAS  Google Scholar 

  63. Mena E, Turkbey B, Mani H, Adler S, Valera VA, Bernardo M, et al. 11C-acetate PET/CT in localized prostate cancer: a study with MRI and histopathologic correlation. J Nuclear Med : Off Public, Soc Nuclear Med. 2012;53:538–45.

    Article  CAS  Google Scholar 

  64. Yang Z, Hu S, Cheng J, Xu J, Shi W, Zhu B, et al. Prevalence and risk of cancer of incidental uptake in prostate identified by fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography. Clin Imaging. 2014;38:470–4.

    Article  PubMed  Google Scholar 

  65. Hwang I, Chong A, Jung SI, Hwang EC, Kim SO, Kang TW, et al. Is further evaluation needed for incidental focal uptake in the prostate in 18-fluoro-2-deoxyglucose positron emission tomography-computed tomography images? Ann Nucl Med. 2013;27:140–5.

    Article  PubMed  Google Scholar 

  66. Damle NA, Bal C, Bandopadhyaya GP, Kumar L, Kumar P, Malhotra A, et al. The role of 18F-fluoride PET-CT in the detection of bone metastases in patients with breast, lung and prostate carcinoma: a comparison with FDG PET/CT and 99mTc-MDP bone scan. Jpn J Radiol. 2013;31:262–9.

    Article  PubMed  Google Scholar 

  67. Shiiba M, Ishihara K, Kimura G, Kuwako T, Yoshihara H, Sato H, et al. Evaluation of primary prostate cancer using 11C-methionine-PET/CT and 18F-FDG-PET/CT. Ann Nucl Med. 2012;26:138–45.

    Article  PubMed  Google Scholar 

  68. Minamimoto R, Uemura H, Sano F, Terao H, Nagashima Y, Yamanaka S, et al. The potential of FDG-PET/CT for detecting prostate cancer in patients with an elevated serum PSA level. Ann Nucl Med. 2011;25:21–7.

    Article  CAS  PubMed  Google Scholar 

  69. Zhang Y, Tang J, Liang HD, Lv FQ, Song ZG. Transrectal real-time tissue elastography—an effective way to distinguish benign and malignant prostate tumors. Asian Pacific J Cancer Prevent : APJCP. 2014;15:1831–5.

    Article  Google Scholar 

  70. Nygard Y, Haukaas SA, Halvorsen OJ, Gravdal K, Frugard J, Akslen LA, et al. A positive real-time elastography is an independent marker for detection of high-risk prostate cancers in the primary biopsy setting. BJU Int. 2014;113:E90–97.

    Article  PubMed  Google Scholar 

  71. Taverna G, Magnoni P, Giusti G, Seveso M, Benetti A, Hurle R, Colombo P, Minuti F, Grizzi F, Graziotti P. Impact of real-time elastography versus systematic prostate biopsy method on cancer detection rate in men with a serum prostate-specific antigen between 2.5 and 10 ng/ml. ISRN oncology 2013;2013:584672.

  72. Zhang Y, Tang J, Li YM, Fei X, Lv FQ, He EH, et al. Differentiation of prostate cancer from benign lesions using strain index of transrectal real-time tissue elastography. Eur J Radiol. 2012;81:857–62.

    Article  PubMed  Google Scholar 

  73. Rausch S, Alt W, Arps H, Alt B, Kalble T. The utility of transrectal sonoelastography in preoperative prostate cancer assessment. Med Ultrasonograp. 2012;14:182–6.

    Article  Google Scholar 

  74. Yan Z, Jie T, Yan-Mi L, Xiang F, Liu-Quan C, En-Hui H, et al. Role of transrectal real-time tissue elastography in the diagnosis of prostate cancer. Zhongguo yi xue ke xue yuan xue bao Acta Academiae Medicinae Sinicae. 2011;33:175–9.

    PubMed  Google Scholar 

  75. Kapoor A, Mahajan G, Sidhu BS. Real-time elastography in the detection of prostate cancer in patients with raised PSA level. Ultrasound Med Biol. 2011;37:1374–81.

    Article  PubMed  Google Scholar 

  76. Giurgiu CR, Manea C, Crisan N, Bungardean C, Coman I, Dudea SM. Real-time sonoelastography in the diagnosis of prostate cancer. Med Ultrasonograp. 2011;13:5–9.

    Google Scholar 

  77. Tsutsumi M, Miyagawa T, Matsumura T, Endo T, Kandori S, Shimokama T, et al. Real-time balloon inflation elastography for prostate cancer detection and initial evaluation of clinicopathologic analysis. AJR Am J Roentgenol. 2010;194:W471–476.

    Article  PubMed  Google Scholar 

  78. Romagnoli A, Autieri G, Centrella D, Gastaldi C, Pedaci G, Rivolta L, et al. [Real-time elastography in the diagnosis of prostate cancer: personal experience]. Urologia. 2010;77:248–53.

    PubMed  Google Scholar 

  79. Aigner F, Pallwein L, Junker D, Schafer G, Mikuz G, Pedross F, et al. Value of real-time elastography targeted biopsy for prostate cancer detection in men with prostate specific antigen 1.25 ng/ml or greater and 4.00 ng/ml or less. J Urol. 2010;184:913–7.

    Article  PubMed  Google Scholar 

  80. Ferrari FS, Scorzelli A, Megliola A, Drudi FM, Trovarelli S, Ponchietti R. Real-time elastography in the diagnosis of prostate tumor. J Ultrasound. 2009;12:22–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pallwein L, Mitterberger M, Pinggera G, Aigner F, Pedross F, Gradl J, et al. Sonoelastography of the prostate: comparison with systematic biopsy findings in 492 patients. Eur J Radiol. 2008;65:304–10.

    Article  PubMed  Google Scholar 

  82. Kamoi K, Okihara K, Ochiai A, Ukimura O, Mizutani Y, Kawauchi A, et al. The utility of transrectal real-time elastography in the diagnosis of prostate cancer. Ultrasound Med Biol. 2008;34:1025–32.

    Article  PubMed  Google Scholar 

  83. Eggert T, Khaled W, Wenske S, Ermert H, Noldus J. [Impact of elastography in clinical diagnosis of prostate cancer. a comparison of cancer detection between B-mode sonography and elastography-guided 10-core biopsies]. Der Urologe Ausg A. 2008;47:1212–7.

    Article  CAS  PubMed  Google Scholar 

  84. Tsutsumi M, Miyagawa T, Matsumura T, Kawazoe N, Ishikawa S, Shimokama T, et al. The impact of real-time tissue elasticity imaging (elastography) on the detection of prostate cancer: clinicopathological analysis. Int J Clin Oncol. 2007;12:250–5.

    Article  PubMed  Google Scholar 

  85. Sumura M, Shigeno K, Hyuga T, Yoneda T, Shiina H, Igawa M. Initial evaluation of prostate cancer with real-time elastography based on step-section pathologic analysis after radical prostatectomy: a preliminary study. Int J Urol : Off J Jap Urol Assoc. 2007;14:811–6.

    Article  Google Scholar 

  86. Pallwein L, Mitterberger M, Struve P, Pinggera G, Horninger W, Bartsch G, et al. Real-time elastography for detecting prostate cancer: preliminary experience. BJU Int. 2007;100:42–6.

    Article  PubMed  Google Scholar 

  87. Pallwein L, Mitterberger M, Struve P, Horninger W, Aigner F, Bartsch G, et al. Comparison of sonoelastography guided biopsy with systematic biopsy: impact on prostate cancer detection. Eur Radiol. 2007;17:2278–85.

    Article  PubMed  Google Scholar 

  88. Cochlin DL, Ganatra RH, Griffiths DF. Elastography in the detection of prostatic cancer. Clin Radiol. 2002;57:1014–20.

    Article  PubMed  Google Scholar 

  89. Ahmad S, Cao R, Varghese T, Bidaut L, Nabi G. Transrectal quantitative shear wave elastography in the detection and characterisation of prostate cancer. Surg Endosc. 2013;27:3280–7.

    Article  PubMed  Google Scholar 

  90. Barr RG, Memo R, Schaub CR. Shear wave ultrasound elastography of the prostate: initial results. Ultrasound Quart. 2012;28:13–20.

    Article  Google Scholar 

  91. Borley N, Feneley MR. Prostate cancer: diagnosis and staging. Asian J Androl. 2009;11:74–80.

    Article  PubMed  Google Scholar 

  92. Catalona WJ, Richie JP, Ahmann FR, Hudson MA, Scardino PT, Flanigan RC, et al. Comparison of digital rectal examination and serum prostate specific antigen in the early detection of prostate cancer: results of a multicenter clinical trial of 6,630 men. J Urol. 1994;151:1283–90.

    CAS  PubMed  Google Scholar 

  93. Seitz M, Scher B, Scherr M, Tilki D, Schlenker B, Gratzke C, et al. [Imaging procedures to diagnose prostate cancer]. Der Urologe Ausg A. 2007;46:W1435–1446. quiz W1447-1438.

    Article  CAS  PubMed  Google Scholar 

  94. Beyersdorff D, Taymoorian K, Knosel T, Schnorr D, Felix R, Hamm B, et al. MRI of prostate cancer at 1.5 and 3.0 T: comparison of image quality in tumor detection and staging. AJR Am J Roentgenol. 2005;185:1214–20.

    Article  PubMed  Google Scholar 

  95. Miyagawa T, Tsutsumi M, Matsumura T, Kawazoe N, Ishikawa S, Shimokama T, et al. Real-time elastography for the diagnosis of prostate cancer: evaluation of elastographic moving images. Jpn J Clin Oncol. 2009;39:394–8.

    Article  PubMed  Google Scholar 

  96. Konig K, Scheipers U, Pesavento A, Lorenz A, Ermert H, Senge T. Initial experiences with real-time elastography guided biopsies of the prostate. J Urol. 2005;174:115–7.

    Article  PubMed  Google Scholar 

  97. Miyanaga N, Akaza H, Yamakawa M, Oikawa T, Sekido N, Hinotsu S, et al. Tissue elasticity imaging for diagnosis of prostate cancer: a preliminary report. Int J Urol : Off J Jap Urol Assoc. 2006;13:1514–8.

    Article  Google Scholar 

  98. Townsend DW. Dual-modality imaging: combining anatomy and function. J Nuclear Med : Off Public, Soc Nuclear Med. 2008;49:938–55.

    Article  Google Scholar 

  99. Yu EY, Muzi M, Hackenbracht JA, Rezvani BB, Link JM, Montgomery RB, et al. C11-acetate and F-18 FDG PET for men with prostate cancer bone metastases: relative findings and response to therapy. Clin Nucl Med. 2011;36:192–8.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Avril N, Dambha F, Murray I, Shamash J, Powles T, Sahdev A. The clinical advances of fluorine-2-D-deoxyglucose—positron emission tomography/computed tomography in urological cancers. Int J Urol : Off J Jap Urol Assoc. 2010;17:501–11.

    Article  Google Scholar 

  101. Kato T, Tsukamoto E, Kuge Y, Takei T, Shiga T, Shinohara N, et al. Accumulation of [11C]acetate in normal prostate and benign prostatic hyperplasia: comparison with prostate cancer. Eur J Nucl Med Mol Imaging. 2002;29:1492–5.

    Article  CAS  PubMed  Google Scholar 

  102. Richter JA, Rodriguez M, Rioja J, Penuelas I, Marti-Climent J, Garrastachu P, et al. Dual tracer 11C-choline and FDG-PET in the diagnosis of biochemical prostate cancer relapse after radical treatment. Molec Imag Biol : MIB : Off Public Acad Molec Imag. 2010;12:210–7.

    Article  Google Scholar 

  103. Fanti S, Nanni C, Lopci E, Castellucci P, Rubello D, Farsad M, et al. Imaging with (11)carbon labelled PET tracers. Nucl Med Commun. 2010;31:613–6.

    Article  CAS  PubMed  Google Scholar 

  104. Marzola MC, Chondrogiannis S, Ferretti A, Grassetto G, Rampin L, Massaro A, et al. Role of 18F-choline PET/CT in biochemically relapsed prostate cancer after radical prostatectomy: correlation with trigger PSA, PSA velocity, PSA doubling time, and metastatic distribution. Clin Nucl Med. 2013;38:e26–32.

    Article  PubMed  Google Scholar 

  105. Steiner C, Vees H, Zaidi H, Wissmeyer M, Berrebi O, Kossovsky MP, et al. Three-phase 18F-fluorocholine PET/CT in the evaluation of prostate cancer recurrence. Nuklearmedizin Nuclear Med. 2009;48:1–9. quiz N2-3.

    Google Scholar 

  106. Ginat DT, Destounis SV, Barr RG, Castaneda B, Strang JG, Rubens DJ. US elastography of breast and prostate lesions. Radiograp : Rev Public Radiol Soc North Am Inc. 2009;29:2007–16.

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge our colleagues for their helpful comments on this paper.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiaohong Ouyang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 34 kb)

Fig. S1

Summary of forest plots with sensitivities and specificities for 11C-choline PET/CT and 18F-fluorocholine PET/CT in the application of PCa diagnosis (JPEG 136 kb)

High resolution image (EPS 1947 kb)

Fig. S2

SROC curve for diagnosis of PCa patients with 11C-choline PET/CT and 18F-fluorocholine PET/CT (JPEG 64 kb)

High resolution image (EPS 1407 kb)

Fig. S3

Summary of forest plots with sensitivities and specificities for 11C-acetate PET/CT in the application of PCa diagnosis and its SROC curve (JPEG 66 kb)

High resolution image (EPS 1409 kb)

Fig. S4

Summary of forest plots with sensitivities and specificities for 18F-fluoroglucose PET/CT in the application of PCa diagnosis and its SROC curve (JPEG 64 kb)

High resolution image (EPS 1414 kb)

Fig. S5

Summary of forest plots with sensitivities and specificities for shear-wave elastography in the application of PCa diagnosis and its SROC curve (JPEG 61 kb)

High resolution image (EPS 1377 kb)

Fig. S6

Summary of forest plots with sensitivities and specificities for transrectal real-time elastosonography in the application of PCa diagnosis (JPEG 82 kb)

High resolution image (EPS 1548 kb)

Fig. S7

SROC curve for diagnosis of PCa patients with transrectal real-time elastosonography (JPEG 52 kb)

High resolution image (EPS 1297 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouyang, Q., Duan, Z., Lei, J. et al. Comparison of meta-analyses among elastosonography (ES) and positron emission tomography/computed tomography (PET/CT) imaging techniques in the application of prostate cancer diagnosis. Tumor Biol. 37, 2999–3007 (2016). https://doi.org/10.1007/s13277-015-4113-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4113-8

Keywords

Navigation