Skip to main content

Advertisement

Log in

Prognostic value of several biomarkers for the patients with malignant pleural mesothelioma

  • Review
  • Published:
Tumor Biology

Abstract

Malignant pleural mesothelioma (MPM) is a highly aggressive tumor of the pleura closely related to asbestos exposure. Rare as it is, the incidence of MPM is predicted to increase mainly as a result of a lengthy latency period from the initial asbestos exposure, making it a public health concern for the next decades. Moreover, the patients with MPM have an extremely poor prognosis due to its high resistance to conventional oncologic treatments and delayed diagnosis. Although the result of current therapeutic modalities based on patient features and clinical stages is very frustrating, great advances have been shown in the knowledge of molecular biology of MPM in recent years. This is accompanied by dozens of putative prognostic biomarkers that are actively involved in tumor biological activities. These prognostic candidates can offer us a new insight into the biological characteristics of MPM, contributing to development of individualized therapeutic strategies directed against oncogenesis and tumor progression. Thus, personalized approaches based on the molecular biology of the patient’s tissue or body fluid will potentially improve the present disappointing outcome, bringing new hope for patients with MPM. This article reviews the principal and several novel biomarkers that can have an influence on prognosis, in the hope that they can provide us with a more profound understanding of the biology of this lethal disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ismail-Khan R, Robinson LA, Williams Jr CC, et al. Malignant pleural mesothelioma: a comprehensive review. Cancer Control. 2006;13(4):255–63.

    PubMed  Google Scholar 

  2. Robinson BW, Musk AW, Lake RA. Malignant mesothelioma. Lancet. 2005;366(9483):397–408.

    Article  CAS  PubMed  Google Scholar 

  3. Le GV, Takahashi K, Park EK, et al. Asbestos use and asbestos-related diseases in Asia: past, present and future. Respirology. 2011;16(5):767–75.

    Article  PubMed  Google Scholar 

  4. Zucali PA, Ceresoli GL, De Vincenzo F, et al. Advances in the biology of malignant pleural mesothelioma. Cancer Treat Rev. 2011;37(7):543–58.

    Article  CAS  PubMed  Google Scholar 

  5. Hollevoet K, Reitsma JB, Creaney J, et al. Serum mesothelin for diagnosing malignant pleural mesothelioma: an individual patient data meta-analysis. J Clin Oncol. 2012;30(13):1541–9.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wu X, Li D, Liu L, et al. Serum soluble mesothelin-related peptide (SMRP): a potential diagnostic and monitoring marker for epithelial ovarian cancer. Arch Gynecol Obstet. 2014;289(6):1309–14.

    Article  CAS  PubMed  Google Scholar 

  7. Bostancı Ö, Kemik Ö, Kemik A, et al. Preoperative serum levels of mesothelin in patients with colon cancer. Dis Markers. 2014;2014:161954.

    PubMed  PubMed Central  Google Scholar 

  8. Baba K, Ishigami S, Arigami T, et al. Mesothelin expression correlates with prolonged patient survival in gastric cancer. J Surg Oncol. 2012;105(2):195–9.

    Article  CAS  PubMed  Google Scholar 

  9. Ho M, Bera TK, Willingham MC, et al. Mesothelin expression in human lung cancer. Clin Cancer Res. 2007;13(5):1571–5.

    Article  CAS  PubMed  Google Scholar 

  10. Tozbikian G, Brogi E, Kadota K, et al. Mesothelin expression in triple negative breast carcinomas correlates significantly with basal-like phenotype, distant metastases and decreased survival. PLoS One. 2014;9(12):e114900.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ali A, Brown V, Denley S, et al. Expression of KOC, S100P, mesothelin and MUC1 in pancreatico-biliary adenocarcinomas: development and utility of a potential diagnostic immunohistochemistry panel. BMC Clin Pathol. 2014;14(1):35.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rump A, Morikawa Y, Tanaka M, et al. Binding of ovarian cancer antigen CA125/MUC16 to mesothelin mediates cell adhesion. J Biol Chem. 2004;279(10):9190–8.

    Article  CAS  PubMed  Google Scholar 

  13. Maeda M, Hino O. Molecular tumor markers for asbestos-related mesothelioma: serum diagnostic markers. Pathol Int. 2006;56(11):649–54.

    Article  CAS  PubMed  Google Scholar 

  14. Sapede C, Gauvrit A, Barbieux I, et al. Aberrant splicing and protease involvement in mesothelin release from epithelioid mesothelioma cells. Cancer Sci. 2008;99(3):590–4.

    Article  CAS  PubMed  Google Scholar 

  15. Hellstrom I, Raycraft J, Kanan S, et al. Mesothelin variant 1 is released from tumor cells as a diagnostic marker. Cancer Epidemiol Biomarkers Prev. 2006;15(5):1014–20.

    Article  CAS  PubMed  Google Scholar 

  16. Bera TK, Pastan I. Mesothelin is not required for normal mouse development or reproduction. Mol Cell Biol. 2000;20(8):2902–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tang Z, Qian M, Ho M. The role of mesothelin in tumor progression and targeted therapy. Anticancer Agents Med Chem. 2013;13(2):276–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Robinson BW, Creaney J, Lake R, et al. Mesothelin-family proteins and diagnosis of mesothelioma. Lancet. 2003;362(9396):1612–6.

    Article  CAS  PubMed  Google Scholar 

  19. Hassan R, Remaley AT, Sampson ML, et al. Detection and quantitation of serum mesothelin, a tumor marker for patients with mesothelioma and ovarian cancer. Clin Cancer Res. 2006;12(2):447–53.

    Article  CAS  PubMed  Google Scholar 

  20. Creaney J, Francis RJ, Dick IM, et al. Serum soluble mesothelin concentrations in malignant pleural mesothelioma: relationship to tumor volume, clinical stage and changes in tumor burden. Clin Cancer Res. 2011;17(5):1181–9.

    Article  CAS  PubMed  Google Scholar 

  21. Wheatley-Price P, Yang B, Patsios D, et al. Soluble mesothelin-related peptide and osteopontin as markers of response in malignant mesothelioma. J Clin Oncol. 2010;28(20):3316–22.

    Article  PubMed  Google Scholar 

  22. Cristaudo A, Foddis R, Vivaldi A, et al. Clinical significance of serum mesothelin in patients with mesothelioma and lung cancer. Clin Cancer Res. 2007;13(17):5076–81.

    Article  CAS  PubMed  Google Scholar 

  23. Grigoriu BD, Scherpereel A, Devos P, et al. Utility of osteopontin and serum mesothelin in malignant pleural mesothelioma diagnosis and prognosis assessment. Clin Cancer Res. 2007;13(10):2928–35.

    Article  CAS  PubMed  Google Scholar 

  24. Schneider J, Hoffmann H, Dienemann H, et al. Diagnostic and prognostic value of soluble mesothelin-related proteins in patients with malignant pleural mesothelioma in comparison with benign asbestosis and lung cancer. J Thorac Oncol. 2008;3(11):1317–24.

    Article  PubMed  Google Scholar 

  25. Linch M, Gennatas S, Kazikin S, et al. A serum mesothelin level is a prognostic indicator for patients with malignant mesothelioma in routine clinical practice. BMC Cancer. 2014;14:674.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hollevoet K, Nackaerts K, Gosselin R, et al. Soluble mesothelin, megakaryocyte potentiating factor, and osteopontin as markers of patient response and outcome in mesothelioma. J Thorac Oncol. 2011;6(11):1930–7.

    Article  PubMed  Google Scholar 

  27. Hollevoet K, Nackaerts K, Thas O, et al. The effect of clinical covariates on the diagnostic and prognostic value of soluble mesothelin and megakaryocyte potentiating factor. Chest. 2012;141(2):477–84.

    Article  CAS  PubMed  Google Scholar 

  28. Creaney J, Dick IM, Meniawy TM, et al. Comparison of fibulin-3 and mesothelin as markers in malignant mesothelioma. Thorax. 2014;69(10):895–902.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yamada S, Tabata C, Tabata R, et al. Clinical significance of pleural effusion mesothelin in malignant pleural mesothelioma. Clin Chem Lab Med. 2011;49(10):1721–6.

    Article  CAS  PubMed  Google Scholar 

  30. Creaney J, Yeoman D, Naumoff LK, et al. Soluble mesothelin in effusions: a useful tool for the diagnosis of malignant mesothelioma. Thorax. 2007;62(7):569–76.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yamaguchi N, Hattori K, Oh-eda M, et al. A novel cytokine exhibiting megakaryocyte potentiating activity from a human pancreatic tumor cell line HPC-Y5. J Biol Chem. 1994;269(2):805–8.

    CAS  PubMed  Google Scholar 

  32. Shiomi K, Miyamoto H, Segawa T, et al. Novel ELISA system for detection of N-ERC/mesothelin in the sera of mesothelioma patients. Cancer Sci. 2006;97(9):928–32.

    Article  CAS  PubMed  Google Scholar 

  33. Creaney J, Sneddon S, Dick IM, et al. Comparison of the diagnostic accuracy of the MSLN gene products, mesothelin and megakaryocyte potentiating factor, as biomarkers for mesothelioma in pleural effusions and serum. Dis Markers. 2013;35(2):119–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hollevoet K, Nackaerts K, Thimpont J, et al. Diagnostic performance of soluble mesothelin and megakaryocyte potentiating factor in mesothelioma. Am J Respir Crit Care Med. 2010;181(6):620–5.

    Article  CAS  PubMed  Google Scholar 

  35. Pass HI, Lott D, Lonardo F, et al. Asbestos exposure, pleural mesothelioma, and serum osteopontin levels. N Engl J Med. 2005;353(15):1564–73.

    Article  CAS  PubMed  Google Scholar 

  36. Pantazopoulos I, Boura P, Xanthos T, et al. Effectiveness of mesothelin family proteins and osteopontin for malignant mesothelioma. Eur Respir J. 2013;41(3):706–15.

    Article  CAS  PubMed  Google Scholar 

  37. El-Tanani MK. Role of osteopontin in cellular signaling and metastatic phenotype. Front Biosci. 2008;13:4276–84.

    Article  CAS  PubMed  Google Scholar 

  38. Tajima K, Ohashi R, Sekido Y, et al. Osteopontin-mediated enhanced hyaluronan binding induces multidrug resistance in mesothelioma cells. Oncogene. 2010;29(13):1941–51.

    Article  CAS  PubMed  Google Scholar 

  39. Ohashi R, Tajima K, Takahashi F, et al. Osteopontin modulates malignant pleural mesothelioma cell functions in vitro. Anticancer Res. 2009;29(6):2205–14.

    CAS  PubMed  Google Scholar 

  40. Rai AJ, Flores RM, Mathew A, et al. Soluble mesothelin related peptides (SMRP) and osteopontin as protein biomarkers for malignant mesothelioma: analytical validation of ELISA based assays and characterization at mRNA and protein levels. Clin Chem Lab Med. 2010;48(2):271–8.

    Article  CAS  PubMed  Google Scholar 

  41. Cappia S, Righi L, Mirabelli D, et al. Prognostic role of osteopontin expression in malignant pleural mesothelioma. Am J Clin Pathol. 2008;130(1):58–64.

    Article  PubMed  Google Scholar 

  42. Zhang Y, Marmorstein LY. Focus on molecules: fibulin-3 (EFEMP1). Exp Eye Res. 2010;90(3):374–5.

    Article  CAS  PubMed  Google Scholar 

  43. Obaya AJ, Rua S, Moncada-Pazos A, et al. The dual role of fibulins in tumorigenesis. Cancer Lett. 2012;325(2):132–8.

    Article  CAS  PubMed  Google Scholar 

  44. Luo R, Zhang M, Liu L, et al. Decrease of fibulin-3 in hepatocellular carcinoma indicates poor prognosis. PLoS One. 2013;8(8):e70511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hwang CF, Chien CY, Huang SC, et al. Fibulin-3 is associated with tumour progression and a poor prognosis in nasopharyngeal carcinomas and inhibits cell migration and invasion via suppressed AKT activity. J Pathol. 2010;222(4):367–79.

    Article  CAS  PubMed  Google Scholar 

  46. Song EL, Hou YP, Yu SP, et al. EFEMP1 expression promotes angiogenesis and accelerates the growth of cervical cancer in vivo. Gynecol Oncol. 2011;121(1):174–80.

    Article  CAS  PubMed  Google Scholar 

  47. Chen J, Wei D, Zhao Y, et al. Overexpression of EFEMP1 correlates with tumor progression and poor prognosis in human ovarian carcinoma. PLoS One. 2013;8(11):e78783.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tong JD, Jiao NL, Wang YX, et al. Downregulation of fibulin-3 gene by promoter methylation in colorectal cancer predicts adverse prognosis. Neoplasma. 2011;58(5):441–8.

    Article  CAS  PubMed  Google Scholar 

  49. Pass HI, Levin SM, Harbut MR, et al. Fibulin-3 as a blood and effusion biomarker for pleural mesothelioma. N Engl J Med. 2012;367(15):1417–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hollevoet K, Sharon E. Fibulin-3 as a biomarker for pleural mesothelioma. N Engl J Med. 2013;368(2):189.

    Article  PubMed  Google Scholar 

  51. Lamote K, Baas P, van Meerbeeck JP. Fibulin-3 as a biomarker for pleural mesothelioma. N Engl J Med. 2013;368(2):189–90.

    Article  PubMed  Google Scholar 

  52. Pass HI, Goparaju C. Fibulin-3 as a biomarker for pleural mesothelioma. N Engl J Med. 2013;368(2):190.

    CAS  PubMed  Google Scholar 

  53. Tanrikulu AC, Abakay A, Kaplan MA, et al. A clinical, radiographic and laboratory evaluation of prognostic factors in 363 patients with malignant pleural mesothelioma. Respiration. 2010;80(6):480–7.

    Article  PubMed  Google Scholar 

  54. Stathopoulos GT, Zhu Z, Everhart MB, et al. Nuclear factor-κB affects tumor progression in a mouse model of malignant pleural effusion. Am J Respir Cell Mol Biol. 2006;34(2):142–50.

    Article  CAS  PubMed  Google Scholar 

  55. Jagirdar R, Solenov EI, Hatzoglou C, et al. Gene expression profile of aquaporin 1 and associated interactors in malignant pleural mesothelioma. Gene. 2013;517(1):99–105.

    Article  CAS  PubMed  Google Scholar 

  56. Yoshida T, Hojo S, Sekine S, et al. Expression of aquaporin-1 is a poor prognostic factor for stage II and III colon cancer. Mol Clin Oncol. 2013;1(6):953–8.

    PubMed  PubMed Central  Google Scholar 

  57. El Hindy N, Bankfalvi A, Herring A, et al. Correlation of aquaporin-1 water channel protein expression with tumor angiogenesis in human astrocytoma. Anticancer Res. 2013;33(2):609–13.

    PubMed  Google Scholar 

  58. Chen R, Shi Y, Amiduo R, et al. Expression and prognostic value of aquaporin 1, 3 in cervical carcinoma in women of Uygur ethnicity from Xinjiang, China. PloS One. 2014;9(2):e98576.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Esteva-Font C, Jin BJ, Verkman AS. Aquaporin-1 gene deletion reduces breast tumor growth and lung metastasis in tumor-producing MMTV-PyVT mice. FASEB J. 2014;28(3):1446–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. López-Campos JL, Sánchez Silva R, Gómez Izquierdo L, et al. Overexpression of Aquaporin-1 in lung adenocarcinomas and pleural mesotheliomas. Histol Histopathol. 2011;26(4):451–9.

    PubMed  Google Scholar 

  61. Kao SC, Armstrong N, Condon B, et al. Aquaporin 1 is an independent prognostic factor in pleural malignant mesothelioma. Cancer. 2012;118(11):2952–61.

    Article  CAS  PubMed  Google Scholar 

  62. Richard V, Kindt N, Decaestecker C, et al. Involvement of macrophage migration inhibitory factor and its receptor (CD74) in human breast cancer. Oncol Rep. 2014;32(2):523–9.

    PubMed  PubMed Central  Google Scholar 

  63. Ji SQ, Su XL, Cheng WL, et al. Down-regulation of CD74 inhibits growth and invasion in clear cell renal cell carcinoma through HIF-1a pathway. Urol Oncol. 2014;32(2):153–61.

    Article  CAS  PubMed  Google Scholar 

  64. Maharshak N, Cohen S, Lantner F, et al. CD74 is a survival receptor on colon epithelial cells. World J Gastroenterol. 2010;16(26):3258–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cheng RJ, Deng WG, Niu CB, et al. Expression of macrophage migration inhibitory factor and CD74 in cervical squamous cell carcinoma. Intl J Gynecol Cancer. 2011;21(6):1004–12.

    Article  Google Scholar 

  66. Morris KT, Nofchissey RA, Pinchuk IV, et al. Chronic macrophage migration inhibitory factor exposure induces mesenchymal epithelial transition and promotes gastric and colon cancers. PLoS One. 2014;9(6):e98656.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Otterstrom C, Soltermann A, Opitz I, et al. CD74: a new prognostic factor for patients with malignant pleural mesothelioma. Br J Cancer. 2014;110(8):2040–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Du W, Wright BM, Li X, et al. Tumor-derived macrophage migration inhibitory factor promotes an autocrine loop that enhances renal cell carcinoma. Oncogene. 2013;32(11):1469–74.

    Article  CAS  PubMed  Google Scholar 

  69. Brock SE, Rendon BE, Yaddanapudi K, et al. Negative regulation of AMP-activated protein kinase (AMPK) activity by macrophage migration inhibitory factor (MIF) family members in non-small cell lung carcinomas. J Biol Chem. 2012;287(45):37917–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang JF, Hua R, Liu DJ, et al. Effect of CD74 on the prognosis of patients with resectable pancreatic cancer. Hepatobil Pancreat Dis Int. 2014;13(1):81–6.

    Article  CAS  Google Scholar 

  71. Lue H, Kapurniotu A, Fingerle-Rowson G, et al. Rapid andtransient activation of the ERK MAPK signalling pathway by macrophage migration inhibitory factor (MIF) and dependence on JAB1/CSN5 and Src kinase activity. Cell Signal. 2006;18(5):688–703.

    Article  CAS  PubMed  Google Scholar 

  72. Leng L, Metz CN, Fang Y, et al. MIF signal transduction initiated by binding to CD74. J Expl Med. 2003;197(11):1467–76.

    Article  CAS  Google Scholar 

  73. Shi X, Leng L, Wang T, et al. CD44 is the signaling component of the macrophage migration inhibitory factor-CD74 receptor complex. Immunity. 2006;25(4):595–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lee CY, Su MJ, Huang CY, et al. Macrophage migration inhibitory factor increases cell motility and up‐regulates αvβ3 integrin in human chondrosarcoma cells. J Cell Biochem. 2012;113(5):1590–8.

    CAS  PubMed  Google Scholar 

  75. Heinrichs D, Knauel M, Offermanns C, et al. Macrophage migration inhibitory factor (MIF) exerts antifibrotic effects in experimental liver fibrosis via CD74. Proc Natl Acad Sci U S A. 2011;108(42):17444–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Iwata T, Taniguchi H, Kuwajima M, et al. The action of D-dopachrome tautomerase as an adipokine in adipocyte lipid metabolism. PLoS One. 2012;7(3):e33402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Park JJ, Seo SM, Kim EJ, et al. Berberine inhibits human colon cancer cell migration via AMP-activated protein kinase-mediated downregulation of integrin β1 signaling. Biochem Biophys Res Commun. 2012;426(4):461–7.

    Article  CAS  PubMed  Google Scholar 

  78. Chang HW, Lee YS, Nam HY, et al. Knockdown of beta-catenin controls both apoptotic and autophagic cell death through LKB1/AMPK signaling in head and neck squamous cell carcinoma cell lines. Cell Signal. 2013;25(4):839–47.

    Article  CAS  PubMed  Google Scholar 

  79. Kaur M, Deep G, Jain AK, et al. Bitter melon juice activates cellular energy sensor AMP-activated protein kinase causing apoptotic death of human pancreatic carcinoma cells. Carcinogenesis. 2013;34(7):1585–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Miyoshi H, Deguchi A, Nakau M, et al. Hepatocellular carcinoma development induced by conditional beta-catenin activation in Lkb1þ+/− mice. Cancer Sci. 2009;100(11):2046–53.

    Article  CAS  PubMed  Google Scholar 

  81. Yang H, Rivera Z, Jube S, et al. Programmed necrosis induced by asbestos in human mesothelial cells causes high-mobility group box 1 protein release and resultant inflammation. Proc Natl Acad Sci U S A. 2010;107(28):12611–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 2007;81(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  83. Carbone M, Yang H. Molecular pathways: targeting mechanisms of asbestos and erionite carcinogenesis in mesothelioma. Clin Cancer Res. 2012;18(3):598–604.

    Article  CAS  PubMed  Google Scholar 

  84. Wang Y, Faux SP, Hallden G, et al. Interleukin-1 beta and tumour necrosis factor-alpha promote the transformation of human immortalised mesothelial cells by erionite. Int J Oncol. 2004;25(1):173–8.

    CAS  PubMed  Google Scholar 

  85. Jube S, Rivera ZS, Bianchi ME, et al. Cancer cell secretion of the DAMP protein HMGB1 supports progression in malignant mesothelioma. Cancer Res. 2012;72(13):3290–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Qi F, Okimoto G, Jube S, et al. Continuous exposure to chrysotile asbestos can cause transformation of human mesothelial cells via HMGB1 and TNF-α signaling. Am J Pathol. 2013;183(5):1654–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tabata C, Shibata E, Tabata R, et al. Serum HMGB1 as a prognostic marker for malignant pleural mesothelioma. BMC Cancer. 2013;13:205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tabata C, Kanemura S, Tabata R, et al. Serum HMGB1 as a diagnostic marker for malignant peritoneal mesothelioma. J Clin Gastroenterol. 2013;47(8):684–8.

    Article  CAS  PubMed  Google Scholar 

  89. Aggarwal S, Devaraja K, Sharma SC, et al. Expression of vascular endothelial growth factor (VEGF) in patients with oral squamous cell carcinoma and its clinical significance. Clin Chim Acta. 2014;436:35–40.

    Article  CAS  PubMed  Google Scholar 

  90. Hansen W, Hutzler M, Abel S, et al. Neuropilin 1 deficiency on CD4+ Foxp3+ regulatory T cells impairs mouse melanoma growth. J Exp Med. 2012;209(11):2001–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Strizzi L, Catalano A, Vianale G, et al. Vascular endothelial growth factor is an autocrine growth factor in human malignant mesothelioma. J Pathol. 2001;193(4):468–75.

    Article  CAS  PubMed  Google Scholar 

  92. Li Q, Yano S, Ogino H, et al. The therapeutic efficacy of anti vascular endothelial growth factor antibody, bevacizumab, and pemetrexed against orthotopically implanted human pleural mesothelioma cells in severe combined immunodeficient mice. Clin Cancer Res. 2007;13(19):5918–25.

    Article  CAS  PubMed  Google Scholar 

  93. Fiorelli A, Vicidomini G, Di Domenico M, et al. Vascular endothelial growth factor in pleural fluid for differential diagnosis of benign and malignant origin and its clinical applications. Interact Cardiovasc Thorac Surg. 2011;12(3):420–4.

    Article  PubMed  Google Scholar 

  94. Tabata C, Tabata R, Kadokawa Y, et al. Thalidomide prevents bleomycin-induced pulmonary fibrosis in mice. J Immunol. 2007;179(1):708–14.

    Article  CAS  PubMed  Google Scholar 

  95. Kumar-Singh S, Weyler J, Martin MJ, et al. Angiogenic cytokines in mesothelioma: a study of VEGF, FGF-1 and -2, and TGF beta expression. J Pathol. 1999;189(1):72–8.

    Article  CAS  PubMed  Google Scholar 

  96. Demirag F, Unsal E, Yilmaz A, et al. Prognostic significance of vascular endothelial growth factor, tumor necrosis, and mitotic activity index in malignant pleural mesothelioma. Chest. 2005;128(5):3382–7.

    Article  CAS  PubMed  Google Scholar 

  97. Aoe K, Hiraki A, Tanaka T, et al. Expression of vascular endothelial growth factor in malignant mesothelioma. Anticancer Res. 2006;26(6C):4833–6.

    PubMed  Google Scholar 

  98. Yasumitsu A, Tabata C, Tabata R, et al. Clinical significance of serum vascular endothelial growth factor in malignant pleural mesothelioma. J Thorac Oncol. 2010;5(4):479–83.

    Article  PubMed  Google Scholar 

  99. Hirayama N, Tabata C, Tabata R, et al. Pleural effusion VEGF levels as a prognostic factor of malignant pleural mesothelioma. Respir Med. 2011;105(1):137–42.

    Article  PubMed  Google Scholar 

  100. Stayner L, Welch LS, Lemen R. The worldwide pandemic of asbestos-related diseases. Annu Rev Public Health. 2013;34:205–16.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC) (81473485) and the Shandong Provincial Natural Science Foundation (2014ZRE27321).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Wu, L., Ji, K. et al. Prognostic value of several biomarkers for the patients with malignant pleural mesothelioma. Tumor Biol. 36, 7375–7384 (2015). https://doi.org/10.1007/s13277-015-4063-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4063-1

Keywords

Navigation