Skip to main content

Advertisement

Log in

Resveratrol induces human K562 cell apoptosis, erythroid differentiation, and autophagy

  • Research Article
  • Published:
Tumor Biology

Abstract

Resveratrol (Res) is a naturally occurring phytoalexin with apoptotic and inducing-glob effects in leukemic cells, but the potential induction of erythroid differentiation in cells is not fully understood. Here, we investigated the effects of Res on human erythro-megakaryoblastic leukemia cell line K562. Among the treated cells, proliferation was inhibited and the occurrence of cell apoptosis and cell death were detected. Erythroid differentiation assay was explored, and we found that Res could increase the expression of glycophorin A (GPA), HBA1, HBB, and γ-globin genes and enforced the expression of GPA, CD71, and Band3 proteins. Res also induced K562 cell autophagy when the concentration of Res was increased up to 50 or 100 μM. Our findings suggested that Res possesses the potency not only inducing apoptosis but also inducing erythroid differentiation and autophagy in K562 cells. These results provide that Res may be a therapeutic candidate for chronic myelogenous leukemia treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Clarkson B, Strife A. Linkage of proliferative and maturational abnormalities in chronic myelogenous leukemia and relevance to treatment. Leukemia. 1993;7:1683–721.

    CAS  PubMed  Google Scholar 

  2. Lazzio CB, Lazzio BB. Human chronic myelogenous leukemia cell line with positive Philadelphia chromosome. Blood. 1975;45:321–34.

    Google Scholar 

  3. Klein E, Ben-Bassat H, Neumann H, Ralph P, Zeuthen J, Polliack A, et al. Properties of the K562 cell line, derived from a patient with chronic myeloid leukemia. Int J Cancer. 1976;18:421–31.

    Article  CAS  PubMed  Google Scholar 

  4. Melo JV. The molecular biology of chronic myeloid leukaemia. Leuk Off J Leuk Soc Am Leuk Res Fund UK. 1996;10:751–6.

    CAS  Google Scholar 

  5. Advani AS, Pendergast AM. Bcr-Abl variants: biological and clinical aspects. Leuk Res. 2002;26:713–20.

    Article  CAS  PubMed  Google Scholar 

  6. Bruecher-Encke B, Griffin JD, Neel BG, Lorenz U. Role of the tyrosine phosphtase SHP-1 in K562 cell differentiation. Leukemia. 2001;15:1424–32.

    Article  CAS  PubMed  Google Scholar 

  7. Tabilio A, Pelicci P, Vinci G, Mannoni P, Civin CI, Vainchenker W, et al. Myeloid and megakaryocytic properties of K-562 cell lines. Cancer Res. 1983;43:4569–74.

    CAS  PubMed  Google Scholar 

  8. Meshkini A, Yazdanparast R. Induction of megakaryocytic differentiation in chronic myelogenous leukemia cell K562 by 3-hydrogenkwadaphnin. Biochem Mol Biol. 2007;40:944–51.

    Article  CAS  Google Scholar 

  9. Alitalo R. Induced differentiation of K562 leukemia cells: a model for studies of gene expression in early megakaryoblasts. Leuk Res. 1990;14:501–14.

    Article  CAS  PubMed  Google Scholar 

  10. Sutherland JA, Turner AR, Mannoni P, McGann LE, Turc JM. Differentiation of K562 leukemia cell along eryhroid, macrophage, and megakaryocyte lineage. J Biol Respir Mod. 1986;5:25–62.

    Google Scholar 

  11. Huang HL, Chen YC, Huang YC, Yang KC, Pan H, Shih SP, et al. Lapatinib induces autophagy, apoptosis and megakaryocytic differentiation in chronic myelogenous leukemia K562 cells. PLoS One. 2011;6:e29014.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. D'Introno A, Paradiso A, Scoditti E, D'Amico L, De Paolis A, Carluccio MA, et al. Antioxidant and anti-inflammatory properties of tomato fruits synthesizing different amounts of stilbenes. Plant Biotechnol J. 2009;7:422–9.

    Article  PubMed  Google Scholar 

  13. Schubert R, Fischer R, Hain R, Schreier PH, Bahnweg G, Ernst D, et al. An ozoneresponsive region of the grapevine resveratrol synthase promoter differs from the basal pathogen-responsive sequence. Plant Mol Biol. 1997;34(3):417–26.

    Article  CAS  PubMed  Google Scholar 

  14. Soleas GJ, Diamandis EP, Goldberg DM. Resveratrol: a molecule whose time has come? And gone? Clin Biochem. 1997;30:91–113.

    Article  CAS  PubMed  Google Scholar 

  15. Hsieh TC, Wang Z, Hamby CV, Wu JM. Inhibition of melanoma cell proliferation by resveratrol is correlated with upregulation of quinone reductase 2 and p53. Biochem Biophys Res Commun. 2005;334:223–30.

    Article  CAS  PubMed  Google Scholar 

  16. Wu CP, Calcagno AM, Hladky SB, Ambudkar SV, Barrand MA. Modulatory effects of plant phenols on human multidrug-resistance proteins 1, 4 and 5 (ABCC1, 4 and 5). FEBS J. 2005;272:4725–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Damianaki A, Bakogeorgou E, Kampa M, Notas G, Hatzoglou A, Panagiotou S, et al. Potent inhibitory action of red wine polyphenols on human breast cancer cells. J Cell Biochem. 2000;78:429–41.

    Article  CAS  PubMed  Google Scholar 

  18. Gautam SC, Xu YX, Dumaguin M, Janakiraman N, Chapman RA. Resveratrol selectively inhibits leukemia cells: a prospective agent for ex vivo bone marrow purging. Bone Marrow Transplant. 2000;25:639–45.

    Article  CAS  PubMed  Google Scholar 

  19. Mitchell SH, Zhu W, Young CY. Resveratrol inhibits the expression and function of the androgen receptor in LNCaP prostate cancer cells. Cancer Res. 1999;59:5892–5.

    CAS  PubMed  Google Scholar 

  20. Pozo-Guisado E, Alvarez-Barrientos A, Mulero-Navarro S, Santiago-Josefat B, Fernandez-Salguero PM. The anti- proliferative activity of resveratrol results in apoptosis in MCF-7 but not in MDA-MB-231 human breast cancer cells: cell-specific alteration of the cell cycle. Biochem Pharmacol. 2012;13:1375–86.

    Google Scholar 

  21. Schneider Y, Vincent F, Duranton B, Badolo L, Gosse F, Raul F. Anti-proliferative effect of resveratrol, a natural component of grapes and wine, on human colonic cancer cells. Cancer Lett. 2000;158:85–91.

    Article  CAS  PubMed  Google Scholar 

  22. Zhou HB, Yan Y, Sun YN, Zhu JR. Resveratrol induces apoptosis in human esophageal carcinoma cells. World J Gastroenterol. 2003;9:408–11.

    CAS  PubMed  Google Scholar 

  23. Wang Z, Zou J, Cao K, Hsieh TC, Huang Y, Wu JM. Dealcoholized red wine containing known amounts of resveratrol suppresses atherosclerosis in hypercholesterolemic rabbits without affecting plasma lipid levels. Int J Mol Med. 2005;16:533–40.

    CAS  PubMed  Google Scholar 

  24. Wu JM, Wang ZR, Hsieh TC, Bruder JL, Zou JG, Huang YZ. Mechanism of cardioprotection by resveratrol, a phenolic antioxidant present in red wine. Int J Mol Med. 2001;8:3–17.

    CAS  PubMed  Google Scholar 

  25. Rossi D, Guerrini A, Bruni R, Brognara E, Borgatti M, Gambari R, et al. Trans-resveratrol in nutraceuticals: issues in retail quality and effectiveness. Molecules. 2012;17:12393–405.

    Article  CAS  PubMed  Google Scholar 

  26. Luzi C, Brisdelli F, Cinque B, Cifone G, Bozzi A. Differential sensitivity to resveratrol-induced apoptosis of human chronic myeloid (K562) and acute lymphoblastic (HSB-2) leukemia cells. Biochem Pharmacol. 2004;68:2019–30.

    Article  CAS  PubMed  Google Scholar 

  27. Chakraborty PK, Mustafi SB, Ganguly S, Chatterjee M, Raha S. Resveratrol induces apoptosis in K562 (chronic myelogenous leukemia) cells by targeting a key survival protein, heat shock protein 70. Cancer Sci. 2008;99:1109–16.

    Article  CAS  PubMed  Google Scholar 

  28. Puissant A, Grosso S, Jacquel A, Belhacene N, Colosetti P, Cassuto JP, et al. Imatinib mesylate-resistant human chronic myelogenous leukemia cell lines exhibit high sensitivity to the phytoalexin resveratrol. FASEB J. 2008;22:1894–904.

    Article  CAS  PubMed  Google Scholar 

  29. Santos Franco S, De Falco L, Ghaffari S, Brugnara C, Sinclair DA, Mattè A, Iolascon A, Mohandas N, Bertoldi M, An X, Siciliano A, Rimmelé P, Cappellini MD, Michan S, Zoratti E, Janin A, De Franceschi L. Resveratrol accelerates erythroid maturation by activation of FOXO3 and ameliorates anemia in beta-thalassemic mice. Haematologica 2014; (in press)

  30. Fibach E, Prus E, Bianchi N, Zuccato C, Breveglieri G, Salvatori F, et al. Resveratrol: antioxidant activity and induction of fetal hemoglobin in erythroid cells from normal donors and β-thalassemia patients. Int J Mol Med. 2012;29:974–82.

    CAS  PubMed  Google Scholar 

  31. Chen K, Liu J, Heck S, Chasis JA, An X, Mohandas N. Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis. Proc Natl Acad Sci U S A. 2009;106:17413–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Liu J, Narla M, An X. Membrane assembly during erythropoiesis. Curr Opin Hematol. 2011;18:133–8.

    Article  PubMed  Google Scholar 

  33. Hu J, Liu J, Xue F, Halverson G, Reid M, Guo A, et al. Isolation and functional characterization of human erythroblasts at distinct stages: implications for understanding of normal and disordered erythropoiesis in vivo. Blood. 2013;121(16):3246–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Socolovsky M, Nam H, Fleming MD, Haase VH, Brugnara C, Lodish HF. Ineffective erythropoiesis in Stat5a(/)5b(/) mice due to decreased survival of early erythroblasts. Blood. 2001;98(12):3261–73.

    Article  CAS  PubMed  Google Scholar 

  35. Asou H, Koshizuka K, Kyo T, Takata N, Kamada N, Koeffier HP. Resveratrol, a natural product derived from grapes, is a new inducer of differentiation in human myeloid leukemias. Int J Hematol. 2002;75:528–33.

    Article  CAS  PubMed  Google Scholar 

  36. Cao Y, Wang F, Liu HY, Fu ZD, Han R. Resveratrol induces apoptosis and differentiation in acute promyelocytic leukemia (NB4) cells. J Asian Nat Prod Res. 2005;7:633–41.

    Article  CAS  PubMed  Google Scholar 

  37. Rodrigue CM, Arous N, Bachir D, Smith-Ravin J, Romeo PH, Galacteros F, et al. Resveratrol, a natural dietary phytoalexin, possesses similar properties to hydroxyurea towards erythroid differentiation. Br J Haematol. 2001;113:500–7.

    Article  CAS  PubMed  Google Scholar 

  38. Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY, et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell. 2009;137:1062–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Puissant A, Robert G, Fenouille N, Luciano F, Cassuto JP, Raynaud S, et al. Resveratrol promotes autophagic cell death in chronic myelogenous leukemia cells via JNK-mediated p62/SQSTM1 expression and AMPK activation. Cancer Res. 2010;70:1042–52.

    Article  CAS  PubMed  Google Scholar 

  40. Griffiths RE, Kupzig S, Cogan N, Mankelow TJ, Betin VM, Trakarnsanga K, et al. The ins and outs of human reticulocyte maturation: autophagy and the endosome/exosome pathway. Autophagy. 2012;8:1150–1.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support from the National Natural Science Foundation of China (grant nos.81270576 and 81372538), New Century Excellent Talents in University (NCET-11-0518), Doctoral fund of the Ministry of Education of China (no. 20120162110054), the Fundamental Research Funds for the Central Universities (no. 2011JQ015), Open Project of Xinjiang Key Laboratory of Biological Resources and Genetic Engineering (XJDX0201_2012_07 and XJDX_0201_2012_09), and the Innovation Experiment Program for Graduate Students of the Central South University (nos. YB13027, CY12363, and CY12364).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, HW., Hu, WX., Zhang, JY. et al. Resveratrol induces human K562 cell apoptosis, erythroid differentiation, and autophagy. Tumor Biol. 35, 5381–5388 (2014). https://doi.org/10.1007/s13277-014-1701-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-1701-y

Keywords

Navigation