Skip to main content

Advertisement

Log in

Development and validation of H11B2C2 monoclonal antibody-reactive hyaluronic acid binding protein: overexpression of HABP during human tumor progression

  • Research Article
  • Published:
Tumor Biology

An Erratum to this article was published on 14 December 2012

Abstract

Informative biomarkers of tumor progression have been elusive. The interaction between hyaluronic acid (HA) and its binding proteins (HABP) plays a pivotal role during malignancy. In the present study, we have developed a monoclonal antibody (mAb, termed as H11B2C2 mAb) and showed that this mAb specifically reacts with overexpressed HABP from a wide variety of malignant tumors as compared with benign tumors. In Western blot analysis, H11B2C2 mAb detected a major 80-kDa protein from human cancer cell lines, and the overexpression of 55–57- and 30-kDa proteins in malignant tumors compared with benign tumors. Furthermore, immunohistochemical analysis of different types of benign and malignant tumors with different grades showed higher expression of HABP in all the malignant tumors when compared with the benign tumors. HABP overexpression was specific to tumor cells when compared with the surrounding stroma and localized on the cell surface as well as in the intracellular region. The competitive inhibition experiments using HA polymer and its oligosaccharides in the Western blot and immunohistopathology experiments suggested that the H11B2C2 mAb-reactive protein is HABP. Altogether, the present study showed overexpression of the H11B2C2 mAb-reactive HABP in various malignant tumors as compared with benign tumors. Thus, H11B2C2 mAb-reactive HABP can be used as a potential biomarker during tumor progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nelson CM, Bissell MJ. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol. 2006;22:287–309.

    Article  PubMed  CAS  Google Scholar 

  2. Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123(Pt 24):4195–200. doi:10.1242/jcs.023820.

    Article  PubMed  CAS  Google Scholar 

  3. Laurent TC, Fraser JR. Hyaluronan. FASEB J. 1992;6(7):2397–404.

    PubMed  CAS  Google Scholar 

  4. Toole BP. Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer. 2004;4(7):528–39.

    Article  PubMed  CAS  Google Scholar 

  5. Zhang L, Underhill CB, Chen L. Hyaluronan on the surface of tumor cells is correlated with metastatic behavior. Cancer Res. 1995;55(2):428–33.

    PubMed  CAS  Google Scholar 

  6. Knudson W. Tumor-associated hyaluronan. Providing an extracellular matrix that facilitates invasion. Am J Pathol. 1996;148(6):1721–6.

    PubMed  CAS  Google Scholar 

  7. Lokeshwar VB, Obek C, Pham HT, Wei D, Young MJ, Duncan RC, Soloway MS, Block NL. Urinary hyaluronic acid and hyaluronidase: markers for bladder cancer detection and evaluation of grade. J Urol. 2000;163(1):348–56.

    Article  PubMed  CAS  Google Scholar 

  8. Boregowda RK, Appaiah HN, Siddaiah M, Kumarswamy SB, Sunila S, Kn T, Mortha K, Toole B, Banerjee SD. Expression of hyaluronan in human tumor progression. J Carcinog. 2006;5:2.

    Article  PubMed  Google Scholar 

  9. Josefsson A, Adamo H, Hammarsten P, Granfors T, Stattin P, Egevad L, Laurent AE, Wikstrom P, Bergh A. Prostate cancer increases hyaluronan in surrounding nonmalignant stroma, and this response is associated with tumor growth and an unfavorable outcome. Am J Pathol. 2011;179(4):1961–8. doi:10.1016/j.ajpath.2011.06.005.

    Article  PubMed  CAS  Google Scholar 

  10. Corte MD, Gonzalez LO, Junquera S, Bongera M, Allende MT, Vizoso FJ. Analysis of the expression of hyaluronan in intraductal and invasive carcinomas of the breast. J Cancer Res Clin Oncol. 2010;136(5):745–50. doi:10.1007/s00432-009-0713-2.

    Article  PubMed  CAS  Google Scholar 

  11. Sironen RK, Tammi M, Tammi R, Auvinen PK, Anttila M, Kosma VM. Hyaluronan in human malignancies. Exp Cell Res. 2011;317(4):383–91. doi:10.1016/j.yexcr.2010.11.017.

    Article  PubMed  CAS  Google Scholar 

  12. Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B. CD44 is the principal cell surface receptor for hyaluronate. Cell. 1990;61(7):1303–13.

    Article  PubMed  CAS  Google Scholar 

  13. Lee TH, Wisniewski HG, Vilcek J. A novel secretory tumor necrosis factor-inducible protein (TSG-6) is a member of the family of hyaluronate binding proteins, closely related to the adhesion receptor CD44. J Cell Biol. 1992;116(2):545–57.

    Article  PubMed  CAS  Google Scholar 

  14. Hardwick C, Hoare K, Owens R, Hohn HP, Hook M, Moore D, Cripps V, Austen L, Nance DM, Turley EA. Molecular cloning of a novel hyaluronan receptor that mediates tumor cell motility. J Cell Biol. 1992;117(6):1343–50.

    Article  PubMed  CAS  Google Scholar 

  15. Iozzo RV. Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem. 1998;67:609–52.

    Article  PubMed  CAS  Google Scholar 

  16. Hascall VC, Majors AK, De La Motte CA, Evanko SP, Wang A, Drazba JA, Strong SA, Wight TN. Intracellular hyaluronan: a new frontier for inflammation? Biochim Biophys Acta. 2004;1673(1–2):3–12. doi:10.1016/j.bbagen.2004.02.013.

    Article  PubMed  CAS  Google Scholar 

  17. Grammatikakis N, Grammatikakis A, Yoneda M, Yu Q, Banerjee SD, Toole BP. A novel glycosaminoglycan-binding protein is the vertebrate homologue of the cell cycle control protein, Cdc37. J Biol Chem. 1995;270(27):16198–205.

    Article  PubMed  CAS  Google Scholar 

  18. Entwistle J, Hall CL, Turley EA. HA receptors: regulators of signalling to the cytoskeleton. J Cell Biochem. 1996;61(4):569–77. doi:10.1002/(SICI)1097-4644(19960616)61:4<569::AID-JCB10>3.0.CO;2-B.

    Article  PubMed  CAS  Google Scholar 

  19. Assmann V, Marshall JF, Fieber C, Hofmann M, Hart IR. The human hyaluronan receptor RHAMM is expressed as an intracellular protein in breast cancer cells. J Cell Sci. 1998;111(Pt 12):1685–94.

    PubMed  CAS  Google Scholar 

  20. Deb TB, Datta K. Molecular cloning of human fibroblast hyaluronic acid-binding protein confirms its identity with P-32, a protein co-purified with splicing factor SF2. Hyaluronic acid-binding protein as P-32 protein, co-purified with splicing factor SF2. J Biol Chem. 1996;271(4):2206–12.

    Article  PubMed  CAS  Google Scholar 

  21. Huang L, Grammatikakis N, Yoneda M, Banerjee SD, Toole BP. Molecular characterization of a novel intracellular hyaluronan-binding protein. J Biol Chem. 2000;275(38):29829–39.

    Article  PubMed  CAS  Google Scholar 

  22. Gunthert U, Hofmann M, Rudy W, Reber S, Zoller M, Haussmann I, Matzku S, Wenzel A, Ponta H, Herrlich P. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell. 1991;65(1):13–24.

    Article  PubMed  CAS  Google Scholar 

  23. Turley EA, Noble PW, Bourguignon LY. Signaling properties of hyaluronan receptors. J Biol Chem. 2002;277(7):4589–92.

    Article  PubMed  CAS  Google Scholar 

  24. Ghosh I, Chowdhury AR, Rajeswari MR, Datta K. Differential expression of Hyaluronic Acid Binding Protein 1 (HABP1)/P32/C1QBP during progression of epidermal carcinoma. Mol Cell Biochem. 2004;267(1–2):133–9.

    Article  PubMed  CAS  Google Scholar 

  25. Garcia GE, Wisniewski HG, Lucia MS, Arevalo N, Slaga TJ, Kraft SL, Strange R, Kumar AP. 2-Methoxyestradiol inhibits prostate tumor development in transgenic adenocarcinoma of mouse prostate: role of tumor necrosis factor-alpha-stimulated gene 6. Clin Cancer Res. 2006;12(3 Pt 1):980–8.

    Article  PubMed  CAS  Google Scholar 

  26. Kaufmann M, Heider KH, Sinn HP, von Minckwitz G, Ponta H, Herrlich P. CD44 variant exon epitopes in primary breast cancer and length of survival. Lancet. 1995;345(8950):615–9.

    Article  PubMed  CAS  Google Scholar 

  27. Wong LS, Cantrill JE, Morris AG, Fraser IA. Expression of CD44 splice variants in colorectal cancer. Br J Surg. 1997;84(3):363–7.

    Article  PubMed  CAS  Google Scholar 

  28. Kayastha S, Freedman AN, Piver MS, Mukkamalla J, Romero-Guittierez M, Werness BA. Expression of the hyaluronan receptor, CD44S, in epithelial ovarian cancer is an independent predictor of survival. Clin Cancer Res. 1999;5(5):1073–6.

    PubMed  CAS  Google Scholar 

  29. Cannistra SA, Abu-Jawdeh G, Niloff J, Strobel T, Swanson L, Andersen J, Ottensmeier C. CD44 variant expression is a common feature of epithelial ovarian cancer: lack of association with standard prognostic factors. J Clin Oncol. 1995;13(8):1912–21.

    PubMed  CAS  Google Scholar 

  30. Kong QY, Liu J, Chen XY, Wang XW, Sun Y, Li H. Differential expression patterns of hyaluronan receptors CD44 and RHAMM in transitional cell carcinomas of urinary bladder. Oncol Rep. 2003;10(1):51–5.

    PubMed  CAS  Google Scholar 

  31. Banerjee SD, Toole BP. Monoclonal antibody to chick embryo hyaluronan-binding protein: changes in distribution of binding protein during early brain development. Dev Biol. 1991;146(1):186–97.

    Article  PubMed  CAS  Google Scholar 

  32. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  PubMed  CAS  Google Scholar 

  33. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680–5.

    Article  PubMed  CAS  Google Scholar 

  34. Zeng C, Toole BP, Kinney SD, Kuo JW, Stamenkovic I. Inhibition of tumor growth in vivo by hyaluronan oligomers. Int J Cancer. 1998;77(3):396–401.

    Article  PubMed  CAS  Google Scholar 

  35. Paiva P, Van Damme MP, Tellbach M, Jones RL, Jobling T, Salamonsen LA. Expression patterns of hyaluronan, hyaluronan synthases and hyaluronidases indicate a role for hyaluronan in the progression of endometrial cancer. Gynecol Oncol. 2005;98(2):193–202.

    Article  PubMed  CAS  Google Scholar 

  36. Stern R, Asari AA, Sugahara KN. Hyaluronan fragments: an information-rich system. European Journal of Cell Biology. 2006;85(8):699–715.

    Article  PubMed  CAS  Google Scholar 

  37. Tlsty TD, Coussens LM. Tumor stroma and regulation of cancer development. Annu Rev Pathol. 2006;1:119–50. doi:10.1146/annurev.pathol.1.110304.100224 [doi].

    Article  PubMed  CAS  Google Scholar 

  38. Spicer AP, Tien JY. Hyaluronan and morphogenesis. Birth Defects Res C Embryo Today. 2004;72(1):89–108.

    Article  PubMed  CAS  Google Scholar 

  39. Knudson CB, Knudson W. Hyaluronan-binding proteins in development, tissue homeostasis, and disease. FASEB J. 1993;7(13):1233–41.

    PubMed  CAS  Google Scholar 

  40. West DC, Hampson IN, Arnold F, Kumar S. Angiogenesis induced by degradation products of hyaluronic acid. Science. 1985;228(4705):1324–6.

    Article  PubMed  CAS  Google Scholar 

  41. Culty M, Nguyen HA, Underhill CB. The hyaluronan receptor (CD44) participates in the uptake and degradation of hyaluronan. J Cell Biol. 1992;116(4):1055–62.

    Article  PubMed  CAS  Google Scholar 

  42. Mehdi Rahmanian PH. Testicular hyaluronidase induces tubular structures of endothelial cells grown in three-dimensional collagen gel through a CD44-mediated mechanism. Int J Cancer. 2002;97(5):601–7.

    Article  PubMed  Google Scholar 

  43. Bourguignon LY, Singleton PA, Diedrich F, Stern R, Gilad E. CD44 interaction with Na + −H + exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase-2 and cathepsin B activation and breast tumor cell invasion. J Biol Chem. 2004;279(26):26991–7007. doi:10.1074/jbc.M311838200 [doi].

    Article  PubMed  CAS  Google Scholar 

  44. Udabage L, Brownlee GR, Nilsson SK, Brown TJ. The over-expression of HAS2, Hyal-2 and CD44 is implicated in the invasiveness of breast cancer. Experimental Cell Research. 2005;310(1):205–17.

    Article  PubMed  CAS  Google Scholar 

  45. Ripellino JA, Bailo M, Margolis RU, Margolis RK. Light and electron microscopic studies on the localization of hyaluronic acid in developing rat cerebellum. J Cell Biol. 1988;106(3):845–55.

    Article  PubMed  CAS  Google Scholar 

  46. Evanko SP, Angello JC, Wight TN. Formation of hyaluronan- and versican-rich pericellular matrix is required for proliferation and migration of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 1999;19(4):1004–13.

    Article  PubMed  CAS  Google Scholar 

  47. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256(5517):495–7.

    Article  PubMed  CAS  Google Scholar 

  48. Breedveld FC. Therapeutic monoclonal antibodies. Lancet. 2000;355(9205):735–40.

    Article  PubMed  CAS  Google Scholar 

  49. O’Mahony D, Bishop MR. Monoclonal antibody therapy. Front Biosci. 2006;11:1620–35.

    Article  PubMed  Google Scholar 

  50. Cersosimo RJ. Monoclonal antibodies in the treatment of cancer, part 1. Am J Health Syst Pharm. 2003;60(15):1531–48.

    PubMed  CAS  Google Scholar 

  51. Bast Jr RC, Lilja H, Urban N, Rimm DL, Fritsche H, Gray J, Veltri R, Klee G, Allen A, Kim N, Gutman S, Rubin MA, Hruszkewycz A. Translational crossroads for biomarkers. Clin Cancer Res. 2005;11(17):6103–8.

    Article  PubMed  Google Scholar 

  52. Diamandis EP. Cancer biomarkers: can we turn recent failures into success? J Natl Cancer Inst. 2010;102(19):1462–7. doi:10.1093/jnci/djq306.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge K.R Hospital, J.S.S Hospital, and Dr. Sri Ram at Bhagavan Pathology Laboratory for supplying tissue samples. We also thank Mr. Putnanju, for preparing tissue sections for the study; Dr. Satheesh Chencheri and Dr. Ragu Sinha, Penn State College of Medicine, for valuable suggestions during manuscript preparation; and Brooke Krovic and Dorthy Fiete for critical reading of the manuscript. Author R.K.B. is indebted to Dr. Chandra Mohan for his unrestricted inputs during this study.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev K Boregowda.

Additional information

Authors’ contributions

S.B., R.K.B., and M.K.K. designed the study. R.K.B. and H.N.A. performed experiments. S.B., R.K.B., S.P., and S.S. analyzed the results. S.P., S.S., and G.A. collected the tissue samples and clinical data. R.K.B., S.B., and S.P. contributed to the manuscript production.

Rights and permissions

Reprints and permissions

About this article

Cite this article

K Boregowda, R., Appaiah, H.N., Karunakumar, M. et al. Development and validation of H11B2C2 monoclonal antibody-reactive hyaluronic acid binding protein: overexpression of HABP during human tumor progression. Tumor Biol. 34, 597–608 (2013). https://doi.org/10.1007/s13277-012-0563-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-012-0563-4

Keywords

Navigation