Skip to main content

Advertisement

Log in

Identification of differential expressed transcripts in cervical cancer of Mexican patients

  • Research Article
  • Published:
Tumor Biology

Abstract

The aim of this study was to identify the gene expression profile in biopsies of patients with cervical intraepithelial neoplasia (CIN) 1, CIN 2, CIN 3, and microinvasive cancer by suppression subtractive hybridization and Southern blotting. After analyzing 1,800 cDNA clones, we found 198 upregulated genes, 166 downregulated, and no significant change of gene expression in 86 clones (p = 0.005). These results were validated by Northern blot analysis (p = 0.0001) in the identification of 28 overexpressed and 7 downregulated transcripts. We observed a set of genes related to the Notch signaling pathway that may be involved in the transformation of cervical cells and in the development to malignancy. The differentially expressed genes may provide useful information about the molecular mechanisms involved in human cervical carcinoma and as diagnostic markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Munoz N, Bosch FX, de Sanjose S, Shah KV. The role of HPV in the etiology of cervical cancer. Mutat Res. 1994;305:293–301.

    PubMed  CAS  Google Scholar 

  2. Bosch FX, de Sanjose S. Human papillomavirus in cervical cancer. Curr Oncol Rep. 2002;4:175–83.

    Article  PubMed  Google Scholar 

  3. Bosch FX, de Sanjose S. The epidemiology of human papillomavirus infection and cervical cancer. Dis Markers. 2007;23:213–27.

    PubMed  Google Scholar 

  4. Bosch FX, Munoz N, Shah KV, Meheus A. Second International Workshop on the Epidemiology of Cervical Cancer and Human Papillomaviruses. Int J Cancer. 1992;52:171–3.

    Article  PubMed  CAS  Google Scholar 

  5. Herrero R, Brinton LA, Reeves WC, Brenes MM, de Britton RC, et al. Screening for cervical cancer in Latin America: a case–control study. Int J Epidemiol. 1992;21:1050–6.

    Article  PubMed  CAS  Google Scholar 

  6. Herrero R, Brinton LA, Reeves WC, Brenes MM, Tenorio F, et al. Risk factors for invasive carcinoma of the uterine cervix in Latin America. Bull Pan Am Health Organ. 1990;24:263–83.

    PubMed  CAS  Google Scholar 

  7. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189:12–9.

    Article  PubMed  CAS  Google Scholar 

  8. Min W, Wen-li M, Zhao-hui S, Ling L, Bao Z, Wen-ling Z. Microarray analysis identifies differentially expressed genes induced by human papillomavirus type 18 e6 silencing rNA. Int J Gynecol Cancer. 2009;19:547–63.

    Article  PubMed  Google Scholar 

  9. Kim TJ, Choi JJ, Kim WY, Choi CH, Lee JW, et al. Gene expression profiling for the prediction of lymph node metastasis in patients with cervical cancer. Cancer Sci. 2008;99:31–8.

    PubMed  CAS  Google Scholar 

  10. Kendrick JE, Conner MG, Huh WK. Gene expression profiling of women with varying degrees of cervical intraepithelial neoplasia. J Low Genit Tract Dis. 2007;11:25–8.

    Article  PubMed  Google Scholar 

  11. Wong YF, Cheung TH, Lo KW, Wang VW, Chan CS, et al. Protein profiling of cervical cancer by protein-biochips: proteomic scoring to discriminate cervical cancer from normal cervix. Cancer Lett. 2004;211:227–34.

    Article  PubMed  CAS  Google Scholar 

  12. de la Barba Rosa APL-MO, Briones-Cerecero EP, Chagolla-López A, De León-Rodríguez A, Santos L, et al. Analysis of human serum from women affected by cervical lesions. J Exp Ther Oncol. 2008;7:65–72.

    Google Scholar 

  13. Gius D, Funk MC, Chuang EY, Feng S, Huettner PC, et al. Profiling microdissected epithelium and stroma to model genomic signatures for cervical carcinogenesis accommodating for covariates. Cancer Res. 2007;67:7113–23.

    Article  PubMed  CAS  Google Scholar 

  14. Unger ER, Steinau M, Rajeevan MS, Swan D, Lee DR, Vernon SD. Molecular markers for early detection of cervical neoplasia. Dis Markers. 2004;20:103–16.

    PubMed  CAS  Google Scholar 

  15. Davelaar EM, van de Lande J, von Mensdorff-Pouilly S, Blankenstein MA, Verheijen RH, Kenemans P. A combination of serum tumor markers identifies high-risk patients with early-stage squamous cervical cancer. Tumour Biol. 2008;29:9–17.

    Article  PubMed  CAS  Google Scholar 

  16. Miele L. Rational targeting of notch signaling in breast cancer. Expert Rev Anticancer Ther. 2008;8:1197–201.

    Article  PubMed  CAS  Google Scholar 

  17. Rizzo P, Osipo C, Foreman K, Golde T, Osborne B, Miele L. Rational targeting of notch signaling in cancer. Oncogene. 2008;27:5124–31.

    Article  PubMed  CAS  Google Scholar 

  18. Miele L, Miao H, Nickoloff BJ. Notch signaling as a novel cancer therapeutic target. Curr Cancer Drug Targets. 2006;6:313–23.

    Article  PubMed  CAS  Google Scholar 

  19. Miele L, Rizzo P, Osipo C, Foreman K, Bocchetta M, Tonetti D. Notch as a potential therapeutic target in cancer. EJC Supplements. 2008;6:4.

    Google Scholar 

  20. Nickoloff BJ, Osborne BA, Miele L. Notch signaling as a therapeutic target in cancer: a new approach to the development of cell fate modifying agents. Oncogene. 2003;22:6598–608.

    Article  PubMed  CAS  Google Scholar 

  21. Cao W, Epstein C, Liu H, DeLoughery C, Ge N, et al. Comparing gene discovery from Affymetrix GeneChip microarrays and Clontech PCR-select cDNA subtraction: a case study. BMC Genomics. 2004;5:26.

    Article  PubMed  Google Scholar 

  22. Burd E. Human papillomavirus and cervical cancer. Clin Microbiol Rev. 2003;16:1–17.

    Article  PubMed  CAS  Google Scholar 

  23. Nees M, Geoghegan JM, Munson P, Prabhu V, Liu Y, et al. Human papillomavirus type 16 e6 and e7 proteins inhibit differentiation-dependent expression of transforming growth factor-beta2 in cervical keratinocytes. Cancer Res. 2000;60:4289–98.

    PubMed  CAS  Google Scholar 

  24. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.

    PubMed  CAS  Google Scholar 

  25. Cheng Q, Lau WM, Tay SK, Chew SH, Ho TH, Hui KM. Identification and characterization of genes involved in the carcinogenesis of human squamous cell cervical carcinoma. Int J Cancer. 2002;98:419–26.

    Article  PubMed  CAS  Google Scholar 

  26. de Wilde J, Wilting SM, Meijer CJ, van de Wiel MA, Ylstra B, et al. Gene expression profiling to identify markers associated with deregulated hTERT in HPV-transformed keratinocytes and cervical cancer. Int J Cancer. 2008;122:877–88.

    Article  PubMed  Google Scholar 

  27. Gulliksen A, Karlsen F. Microchips for the diagnosis of cervical cancer. Methods Mol Biol. 2007;385:65–86.

    Article  PubMed  CAS  Google Scholar 

  28. Martin CM, Astbury K, McEvoy L, O’Toole S, Sheils O, O’Leary JJ. Gene expression profiling in cervical cancer: identification of novel markers for disease diagnosis and therapy. Methods Mol Biol. 2009;511:333–59.

    Article  PubMed  CAS  Google Scholar 

  29. Rishi AK, Zhang L, Yu Y, Jiang Y, Nautiyal J, et al. Cell cycle- and apoptosis-regulatory protein-1 is involved in apoptosis signaling by epidermal growth factor receptor. J Biol Chem. 2006;281:13188–98.

    Article  PubMed  CAS  Google Scholar 

  30. Broggini M, Buraggi G, Brenna A, Riva L, Codegoni AM, et al. Cell cycle-related phosphatases CDC25A and B expression correlates with survival in ovarian cancer patients. Anticancer Res. 2000;20:4835–40.

    PubMed  CAS  Google Scholar 

  31. Loffler H, Syljuasen RG, Bartkova J, Worm J, Lukas J, Bartek J. Distinct modes of deregulation of the proto-oncogenic CDC25A phosphatase in human breast cancer cell lines. Oncogene. 2003;22:8063–71.

    Article  PubMed  Google Scholar 

  32. Vacca A, Felli MP, Palermo R, Di Mario G, Calce A, et al. Notch3 and pre-TCR interaction unveils distinct NF-kappab pathways in T-cell development and leukemia. EMBO J. 2006;25:1000–8.

    Article  PubMed  CAS  Google Scholar 

  33. Bellavia D, Campese AF, Checquolo S, Balestri A, Biondi A, et al. Combined expression of pTalpha and Notch3 in T cell leukemia identifies the requirement of preTCR for leukemogenesis. Proc Natl Acad Sci USA. 2002;99:3788–93.

    Article  PubMed  CAS  Google Scholar 

  34. Park JT, Li M, Nakayama K, Mao TL, Davidson B, et al. Notch3 gene amplification in ovarian cancer. Cancer Res. 2006;66:6312–8.

    Article  PubMed  CAS  Google Scholar 

  35. Wang T, Holt CM, Xu C, Ridley C, Jones PO, et al. Notch3 activation modulates cell growth behaviour and cross-talk to Wnt/TCF signalling pathway. Cell Signal. 2007;19:2458–67.

    Article  PubMed  CAS  Google Scholar 

  36. Song LL, Peng Y, Yun J, Rizzo P, Chaturvedi V, et al. Notch-1 associates with IKKalpha and regulates IKK activity in cervical cancer cells. Oncogene. 2008;27:5833–44.

    Article  PubMed  CAS  Google Scholar 

  37. Zhang XY, DeSalle LM, Patel JH, Capobianco AJ, Yu D, et al. Metastasis-associated protein 1 (MTA1) is an essential downstream effector of the c-MYC oncoprotein. Proc Natl Acad Sci USA. 2005;102:13968–73.

    Article  PubMed  CAS  Google Scholar 

  38. Sun Y, Wu J, Wu SH, Thakur A, Bollig A, et al. Expression profile of microRNAs in c-MYC induced mouse mammary tumors. Breast Cancer Res Treat. 2009;118:185–96.

    Article  PubMed  CAS  Google Scholar 

  39. Wu CH, Sahoo D, Arvanitis C, Bradon N, Dill DL, Felsher DW. Combined analysis of murine and human microarrays and chip analysis reveals genes associated with the ability of MYC to maintain tumorigenesis. PLoS Genet. 2008;4:e1000090.

    Article  PubMed  Google Scholar 

  40. Subramanyam D, Krishna S. C-MYC substitutes for Notch1-CBF1 functions in cooperative transformation with papillomavirus oncogenes. Virology. 2006;347:191–8.

    Article  PubMed  CAS  Google Scholar 

  41. Zagouras PSS, Blaumueller CM, Carcangiu ML, Artavanis-Tsakonas S. Alterations in Notch signaling in neoplastic lesions of the human cervix. Proc Natl Acad Sci USA. 1995;92:6414–8.

    Article  PubMed  CAS  Google Scholar 

  42. Daniel B, Rangarajan A, Mukherjee G, Vallikad E, Krishna S. The link between integration and expression of human papillomavirus type 16 genomes and cellular changes in the evolution of cervical intraepithelial neoplastic lesions. J Gen Virol. 1997;78:1095–101.

    PubMed  CAS  Google Scholar 

  43. Srivastava S, Ramdass B, Nagarajan S, Rehman M, Mukherjee G, Krishna S. Notch1 regulates the functional contribution of RhoC to cervical carcinoma progression. Br J Cancer. 2010;102:196–205.

    Article  PubMed  CAS  Google Scholar 

  44. Talora C, Cialfi S, Segatto O, Morrone S, Kim Choi J, et al. Constitutively active Notch1 induces growth arrest of HPV-positive cervical cancer cells via separate signaling pathways. Exp Cell Res. 2005;305:343–54.

    Article  PubMed  CAS  Google Scholar 

  45. Talora C, Sgroi DC, Crum CP, Dotto GP. Specific down-modulation of Notch1 signaling in cervical cancer cells is required for sustained HPV-e6/e7 expression and late steps of malignant transformation. Genes Dev. 2002;16:2252–63.

    Article  PubMed  CAS  Google Scholar 

  46. Wang L, Qin H, Chen B, Xin X, Li J, Han H. Overexpressed active Notch1 induces cell growth arrest of HeLa cervical carcinoma cells. Int J Gynecol Cancer. 2007;17:1283–92.

    Article  PubMed  CAS  Google Scholar 

  47. Ding LC, She L, Zheng DL, Huang QL, Wang JF, et al. Notch-4 contributes to the metastasis of salivary adenoid cystic carcinoma. Oncol Rep. 2010;24:363–8.

    PubMed  CAS  Google Scholar 

  48. Zheng M, Zhang Z, Zhao X, Ding Y, Han H. The Notch signaling pathway in retinal dysplasia and retina vascular homeostasis. J Genet Genomics. 2010;37:573–82.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mrs. Sydney Robertson Jiménez for the English correction of the manuscript.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leticia Santos.

Additional information

Communicated by Leticia Santos

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, L., León-Galván, M.F., Marino-Marmolejo, E.N. et al. Identification of differential expressed transcripts in cervical cancer of Mexican patients. Tumor Biol. 32, 561–568 (2011). https://doi.org/10.1007/s13277-010-0151-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-010-0151-4

Keywords

Navigation