Skip to main content
Log in

The role of bacterial cellulose in artificial blood vessels

  • Review Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Cardiovascular diseases are major causes of death worldwide, with pathologies including stroke, myocardial infarction, and vascular disease. Vascular grafts may be necessary to treat cardiovascular disease. The replacement of blood vessels has been very challenging in biomedical research. Dacron, ePTFE, and polyurethane are the most commonly used materials for artificial blood vessels. Bacterial cellulose (BC) synthesized by Gluconacetobacter xylinus exhibits unique properties including high purity, biocompatibility, resistance to degradation and low solubility. BC has been widely studied for applications in biomedical materials such as wound dressing and artificial skin. Recent studies have shown that BC is a promising material for preparing artificial blood vessels. This review provides a concise overview of current studies of BC and explores strategies for its clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Du, F. et al. Gradient nanofibrous chitosan/poly varepsilon-caprolactone scaffolds as extracellular microenvironments for vascular tissue engineering. Biomaterials 33:762–770 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. WHO. Cardiovascular diseases (CVDs). Available at: http://www.who.int/mediacentre/factsheets/fs317/en/ (2017).

  3. Scherner, M. et al. In vivo application of tissue-engineered blood vessels of bacterial cellulose as small arterial substitutes: proof of concept? J Surg Res 189:340–347 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Tara, S. et al. Vessel Bioengineering -Development of Small-Diameter Arterial Grafts. Circ J 78:12–19 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Ravi, S. & Chaikof, E. L. Biomaterials for vascular tissue engineering. Regen Med 5:107–120 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yashiro, B., Shoda, M., Tomizawa, Y., Manaka, T. & Hagiwara, N. Long-term results of a cardiovascular implantable electronic device wrapped with an expanded polytetrafluoroethylene sheet. J Artif Organs 15:244–249 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Saha, S. P. et al. Use of Fibrin Sealant as a Hemostatic Agent in Expanded Polytetrafluoroethylene Graft Placement Surgery. Ann Vasc Surg 25:813–822 (2011).

    Article  PubMed  Google Scholar 

  8. Wang, S. W. et al. Biomimetic Fluorocarbon Surfactant Polymers Reduce Platelet Adhesion on PTFE/ePTFE Surfaces. J Biomater Sci Polym Ed 20:619–635 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Barozzi, L. et al. Side-to-Side Aorto-GoreTex Central Shunt Warrants Central Shunt Patency and Pulmonary Arteries Growth. Ann Thorac Surg 92:1476–1482 (2011).

    Article  PubMed  Google Scholar 

  10. Kudo, F. A., Nishibe, T., Miyazaki, K., Flores, J. & Yasuda, K. Albumin-coated knitted Dacron aortic prostheses. Int Angiol 21:214–217 (2002).

    CAS  PubMed  Google Scholar 

  11. Lessim, S. et al. Protein selective adsorption properties of a polyethylene terephtalate artificial ligament grafted with poly (sodium styrene sulfonate) (polyNaSS): correlation with physicochemical parameters of proteins. Biomedical Materials 10 (2015).

  12. Ashton, J. H. et al. Polymeric endoaortic paving: Mechanical, thermoforming, and degradation properties of polycaprolactone/polyurethane blends for cardiovascular applications. Acta Biomater 7:287–294 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Theron, J. P. et al. Modification, crosslinking and reactive electrospinning of a thermoplastic medical polyurethane for vascular graft applications. Acta Biomater 6:2434–2447 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Grasl, C., Bergmeister, H., Stoiber, M., Schima, H. & Weigel, G. Electrospun polyurethane vascular grafts: In vitro mechanical behavior and endothelial adhesion molecule expression. J Biomed Mater Res A 93a:716–723 (2010).

    CAS  Google Scholar 

  15. Jaganathan, S. K., Supriyanto, E., Murugesan, S., Balaji, A. & Asokan, M. K. Biomaterials in Cardiovascular Research: Applications and Clinical Implications. Biomed Res Int (2014).

    Google Scholar 

  16. Gutierrez-Hernandez, J. M. et al. In vitro evaluation of osteoblastic cells on bacterial cellulose modified with multi-walled carbon nanotubes as scaffold for bone regeneration. Mater Sci Eng C Mater Biol Appl 75:445–453 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Huber, T. et al. A critical review of all-cellulose composites. J Mater Sci 47:1171–1186 (2012).

    Article  CAS  Google Scholar 

  18. Picheth, G. F. et al. Bacterial cellulose in biomedical applications: A review. Int J Biol Macromol 104:97–106 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Svensson, A. et al. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Klemm, D., Heublein, B., Fink, H. P. & Bohn, A. Cellulose: Fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 44:3358–3393 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Lee, K. Y., Buldum, G., Mantalaris, A. & Bismarck, A. More Than Meets the Eye in Bacterial Cellulose: Biosynthesis, Bioprocessing, and Applications in Advanced Fiber Composites. Macromol Biosci 14:10–32 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Ross, P. et al. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325:279–281 (1987).

    Article  CAS  PubMed  Google Scholar 

  23. Czaja, W. K., Young, D. J., Kawecki, M. & Brown, R. M. The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Ullah, H., Wahid, F., Santos, H. A. & Khan, T. Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohydr Polym 150:330–352 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Ul-Islam, M., Khan, T. & Park, J. K. Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr Polym 88:596–603 (2012).

    Article  CAS  Google Scholar 

  26. Chawla, P. R., Bajaj, I. B., Survase, S. A. & Singhal, R. S. Microbial Cellulose: Fermentative Production and Applications. Food Technology and Biotechnology 47:107–124 (2009).

    CAS  Google Scholar 

  27. Helenius, G. et al. In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res A 76a:431–438 (2006).

    Article  CAS  Google Scholar 

  28. Moreira, S. et al. BC nanofibres: In vitro study of genotoxicity and cell proliferation. Toxicol Lett 189:235–241 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Jeong, S. I. et al. Toxicologic evaluation of bacterial synthesized cellulose in endothelial cells and animals. Mol. Cell. Toxicol. 6:373–380 (2010).

    Article  Google Scholar 

  30. Kim, G. D. et al. Evaluation of immunoreactivity of in vitro and in vivo models against bacterial synthesized cellulose to be used as a prosthetic biomaterial. BioChip J 7:201–209 (2013).

    Article  CAS  Google Scholar 

  31. Jeong, S. I. et al. Effect of alpha, beta-unsaturated aldehydes on endothelial cell growth in bacterial cellulose for vascular tissue engineering. Mol. Cell. Toxicol. 8:119–126 (2012).

    Article  CAS  Google Scholar 

  32. Hong, J. Y. et al. Environmental Risk Assessment of Toxicity Exposure: High-throughput Expression Profiling. BioChip J 10:74–80 (2016).

    Article  CAS  Google Scholar 

  33. Lee, S. E. et al. Integrative Analysis of miRNA and mRNA Profiles in Response to Myricetin in Human Endothelial Cells. BioChip J 9:239–246 (2015).

    Article  CAS  Google Scholar 

  34. Park, H. R., Lee, S. E., Son, G. W., Yun, H. D. & Park, Y. S. Integrated Analysis of Changed microRNA Expression in Crotonaldehyde-exposed Human Endothelial Cells. BioChip J 10:150–157 (2016).

    Article  CAS  Google Scholar 

  35. Yu, S. Y., Paul, S. & Hwang, S. Y. Application of the Emerging Technologies in Toxicogenomics: An Overview. BioChip J 10:288–296 (2016).

    Article  CAS  Google Scholar 

  36. Petersen, N. & Gatenholm, P. Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol 91:1277–1286 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Shi, Z. J., Zhang, Y., Phillips, G. O. & Yang, G. Utilization of bacterial cellulose in food. Food Hydrocolloids 35:539–545 (2014).

    Article  CAS  Google Scholar 

  38. Amnuaikit, T., Chusuit, T., Raknam, P. & Boonme, P. Effects of a cellulose mask synthesized by a bacterium on facial skin characteristics and user satisfaction. Med Devices (Auckl) 4:77–81 (2011).

    Google Scholar 

  39. Gayathry, G. & Gopalaswamy, G. Production and characterisation of microbial cellulosic fibre from Acetobacter xylinum. Indian J Fibre Text 39:93–96 (2014).

    CAS  Google Scholar 

  40. Yoshinaga, F., Tonouchi, N. & Watanabe, K. Research progress in production of bacterial cellulose by aeration and agitation culture and its application as a new industrial material. Biosci Biotechnol Biochem 61:219–224 (1997).

    Article  CAS  Google Scholar 

  41. Halib, N., Amin, M. C. I. M. & Ahmad, I. Unique Stimuli Responsive Characteristics of Electron Beam Synthesized Bacterial Cellulose/Acrylic Acid Composite. J Appl Polym Sci 116:2920–2929 (2010).

    CAS  Google Scholar 

  42. Amin, M. C. I. M., Ahmad, N., Halib, N. & Ahmad, I. Synthesis and characterization of thermo-and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydrate Polymers 88:465–473 (2012).

    Article  Google Scholar 

  43. Ahmad, N., Amin, M. C. I. M., Mahali, S. M., Ismail, I. & Chuang, V. T. G. Biocompatible and Mucoadhesive Bacterial Cellulose-g-Poly (acrylic acid) Hydrogels for Oral Protein Delivery. Mol Pharm 11:4130–4142 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Zang, S. S. et al. Investigation on artificial blood vessels prepared from bacterial cellulose. Mater Sci Eng C Mater Biol Appl 46:111–117 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Klemm, D., Schumann, D., Udhardt, U. & Marsch, S. Bacterial synthesized cellulose -artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603 (2001).

    Article  CAS  Google Scholar 

  46. Putra, A., Kakugo, A., Furukawa, H., Gong, J. P. & Osada, Y. Tubular bacterial cellulose gel with oriented fibrils on the curved surface. Polymer (Guildf) 49:1885–1891 (2008).

    Article  CAS  Google Scholar 

  47. Bodin, A. et al. Influence of cultivation conditions on mechanical and morphological properties of bacterial cellulose tubes. Biotechnol Bioeng 97:425–434 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Schumann, D. A. et al. Artificial vascular implants from bacterial cellulose: preliminary results of small arterial substitutes. Cellulose 16:877–885 (2009).

    Article  CAS  Google Scholar 

  49. Wurdinger, J. et al. BASYC (bacterial synthesized cellulose)— the vitalization of a microvessel-prosthesis in the rat. Microsurgery 20:268 (2000).

    Google Scholar 

  50. Kim, G. D. et al. beta (2) integrins (CD11/18) are essential for the chemosensory adhesion and migration of polymorphonuclear leukocytes on bacterial cellulose. J Biomed Mater Res A 103:1809–1817 (2015).

    Article  PubMed  Google Scholar 

  51. Zhu, W. K., Li, W., He, Y. & Duan, T. In-situ biopreparation of biocompatible bacterial cellulose/graphene oxide composites pellets. Appl Surf Sci 338:22–26 (2015).

    Article  CAS  Google Scholar 

  52. Andrade, F. K., Costa, R., Domingues, L., Soares, R. & Gama, M. Improving bacterial cellulose for blood vessel replacement: Functionalization with a chimeric protein containing a cellulose-binding module and an adhesion peptide. Acta Biomater 6:4034–4041 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Backdahl, H., Esguerra, M., Delbro, D., Risberg, B. & Gatenholm, P. Engineering microporosity in bacterial cellulose scaffolds. J Tissue Eng Regen Med 2:320–330 (2008).

    Article  PubMed  Google Scholar 

  54. Brown, E. E., Laborie, M. P. G. & Zhang, J. W. Glutaraldehyde treatment of bacterial cellulose/fibrin composites: impact on morphology, tensile and viscoelastic properties. Cellulose 19:127–137 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Seek Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.E., Park, Y.S. The role of bacterial cellulose in artificial blood vessels. Mol. Cell. Toxicol. 13, 257–261 (2017). https://doi.org/10.1007/s13273-017-0028-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-017-0028-3

Key words

Navigation