Skip to main content
Log in

Stress specific Escherichia coli biosensors based on gene promoters for toxicity monitoring

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Target specific biosensor Escherichia coli strains have been engineered for studying the stress action. Four different recombinant E. coli biosensors were constructed by fusing one promoter each of ung, rseA, ibpA, and yggX gene in pET-21a::lacZ system, which contains very effective color-readout sensing system. The responses of four bacteria sensor strains, UNGLacZ, RSEALacZ, IBPALacZ, and YGGXLacZ, have been characterized under treatment with mitomycin C (MMC), phenol, ethanol and hydrogen peroxide (H2O2), respectively. UNGLacZ responded strongly only to MMC (DNA damaging chemical), whereas no response has been observed with phenol, which is a membrane damage chemical. However, RSEALacZ gave significant response with phenol. In addition, ethanol and hydrogen peroxide caused dose-dependent induction from IBPALacZ and YGGXLacZ, respectively. Thus, the results of the present study demonstrate that four bacterial strains show significant and different responses based on various stress defense mechanisms, which these genes originally possessed in E. coli. The four bacterial biosensors can be potentially used in environmental Point-of-Care Testing (ePOCT) leading to quick, easy and early detection of toxic contaminants locally as well as resulting in real-time measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rakow, N. A. & Suslick, K. S. A colorimetric sensor array for odour visualization. Nature 406:710–713 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Jouanneau, S., Durand, M. J. & Thouand, G. Online Detection of Metals in Environmental Samples: Comparing Two Concepts of Bioluminescent Bacterial Biosensors. Environ Sci Technol 46:11979–11987 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Scheller, F. et al. Biosensors: fundamentals, applications and trends. Sensor Actuat B-Chem 4:197–206 (1991).

    Article  CAS  Google Scholar 

  4. Vanrolleghem, P. A., Kong, Z., Rombouts, G. & Verstraete, W. An Online Respirographic Biosensor for the Characterization of Load and Toxicity of Wastewaters. J Chem Technol Biot 59:321–333 (1994).

    Article  CAS  Google Scholar 

  5. Paitan, Y. et al. On-line and in situ biosensors for monitoring environmental pollution. Biotechnol Adv 22:27–33 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Daunert, S. et al. Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem Rev 100:2705–2738 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Kohler, S., Belkin, S. & Schmid, R. D. Reporter gene bioassays in environmental analysis. Fresenius J Anal Chem 366:769–779 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Scott, D. L., Ramanathan, S., Shi, W., Rosen, B. P. & Daunert, S. Genetically engineered bacteria: electrochemical sensing systems for antimonite and arsenite. Anal Chem 69:16–20 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Klein, J., Altenbuchner, J. & Mattes, R. Genetically modified Escherichia coli for colorimetric detection of inorganic and organic Hg compounds. Exs 80:133–151 (1997).

    CAS  PubMed  Google Scholar 

  10. Ogasawara, H. et al. Negative regulation of DNA repair gene (ung) expression by the CpxR/CpxA two-component system in Escherichia coli K-12 and induction of mutations by increased expression of CpxR. J Bacteriol 186:8317–8325 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Bennett, S. E., Sung, J.-S. & Mosbaugh, D. W. Fidelity of uracil-initiated base excision DNA repair in DNA polymerase ß-proficient and-deficient mouse embryonic fibroblast cell extracts. J Biol Chem 276:42588–42600 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Missiakas, D., Mayer, M. P., Lemaire, M., Georgopoulos, C. & Raina, S. Modulation of the Escherichia coli sigmaE (RpoE) heat-shock transcription-factor activity by the RseA, RseB and RseC proteins. Mol Microbiol 24:355–371 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Ades, S. E., Grigorova, I. L. & Gross, C. A. Regulation of the alternative sigma factor sigma (E) during initiation, adaptation, and shutoff of the extracytoplasmic heat shock response in Escherichia coli. J Bacteriol 185:2512–2519 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Allen, S. P., Polazzi, J. O., Gierse, J. K. & Easton, A. M. 2 Novel Heat-shock genes encoding proteins produced in response to heterologous protein extression in Escherichia-coli. J Bacteriol 174:6938–6947 (1992).

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Thomas, J. G. & Baneyx, F. Roles of the Escherichia coli small heat shock proteins IbpA and IbpB in thermal stress management: Comparison with ClpA, ClpB, and HtpG in vivo. J Bacteriol 180:5165–5172 (1998).

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Pomposiello, P. J., Koutsolioutsou, A., Carrasco, D. & Demple, B. SoxRS-regulated expression and genetic analysis of the yggX gene of Escherichia coli. J Bacteriol 185:6624–6632 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Iyer, V. N. & Szybalski, W. A Molecular Mechanism of Mitomycin Action-Linking of Complementary DNA strands. Proc Natl Acad Sci USA 50:355-&(1963).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Paulus, W. Microbicides for the protection of materials (1993).

    Book  Google Scholar 

  19. Choi, S. H. & Gu, M. B. Phenolic toxicity—detection and classification through the use of a recombinant bioluminescent Escherichia coli. Environ Toxicol Chem 20:248–255 (2001).

    CAS  PubMed  Google Scholar 

  20. Grigorova, I. L. et al. Fine-tuning of the Escherichia coli sigmaE envelope stress response relies on multiple mechanisms to inhibit signal-independent proteolysis of the transmembrane anti-sigma factor, RseA. Genes Dev 18:2686–2697 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Demple, B. Regulation of bacterial oxidative stress genes. Annu Rev Genet 25:315–337 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. King, J. M. et al. Rapid, sensitive bioluminescent reporter technology for naphthalene exposure and biodegradation. Science 249:778–781 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, D. et al. Whole-cell bacterial bioreporter for actively searching and sensing of alkanes and oil spills. Microb Biotechnol 5:87–97 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Lee, A. S. et al. Whole-cell sensing for a harmful bloom-forming microscopic alga by measuring antibody—antigen forces. IEEE Trans Nanobioscience 5:149–156 (2006).

    Article  PubMed  Google Scholar 

  25. Shetty, R. S. et al. Luminescence-based whole-cellsensing systems for cadmium and lead using genetically engineered bacteria. Anal Bioanal Chem 376:11–17 (2003).

    CAS  PubMed  Google Scholar 

  26. Antonelli, M. L., Campanella, L. & Ercole, P. Lichenbased biosensor for the determination of benzene and 2-chlorophenol: microcalorimetric and amperometric investigations. Anal Bioanal Chem 381:1041–1048 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, P., Ni, Y. & Kokot, S. A novel dsDNA/polydiphenylamine-4-sulfonic acid electrochemical biosensor for selective detection of the toxic catechol and related DNA damage. Analyst 138:1141–1148 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiho Min or Yang-Hoon Kim.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekhon, S.S., Ahn, JY., Ahn, JM. et al. Stress specific Escherichia coli biosensors based on gene promoters for toxicity monitoring. Mol. Cell. Toxicol. 10, 369–377 (2014). https://doi.org/10.1007/s13273-014-0041-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-014-0041-8

Keywords

Navigation