Skip to main content
Log in

Gene expression profiling for seed protein and oil synthesis during early seed development in soybean

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Soybean (Glycine max L.) is one of the most important crops because of its high seed contents of protein and oil. However, little is known about the molecular regulation of seed filling during accumulation of seed protein and oil storage products. We identified soybean homologs of Arabidopsis genes involved in metabolic pathways of carbon precursors, protein, and oil, and analyzed gene expression patterns in immature seeds at 1 and 2 weeks after flowering (WAF). G. max undergoes two rounds of whole-genome duplication; the number of genes involved in the three synthesis pathways is more than two times higher than that in Arabidopsis. Among these genes, five were conserved as single-copy genes and 44 were high copy gene families consisting of more than seven homolog members. We identified five differentially expressed genes in immature seeds aged between 1 and 2 WAF, including CELL WALL INVERTASE, BRANCHED-CHAIN AMINO ACID TRANSAMINASE, AMINO ACID PERMEASE, ALDEHYDE REDUCTASE, and BIOTIN CARBOXYL CARRIER PROTEIN. Expression analysis of the duplicated genes on the synteny block revealed that the duplicated genes involved in protein synthesis had stronger positive correlations between their expression patterns than those of oil synthesis genes. This study provides novel insights into the molecular details of genes associated with soybean seed protein and oil synthesis pathways. These genes can be used as tools to improve seed nutrient composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alifano P, Fani R, Liò P, Lazcano A, Bazzicalupo M, Carlomagno MS, Bruni CB (1996) Histidine biosynthetic pathway and genes: structure, regulation, and evolution. Microbiol Rev 60:44

    PubMed Central  CAS  PubMed  Google Scholar 

  • Angelovici R, Lipka AE, Deason N, Gonzalez-Jorge S, Lin H, Cepela J, Buell R, Gore MA, DellaPenna D (2013) Genome-wide analysis of branched-chain amino acid levels in Arabidopsis seeds. Plant Cell 25:4827–4843

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Armisén D, Lecharny A, Aubourg S (2008) Unique genes in plants: specificities and conserved features throughout evolution. BMC Evol Biol 8:280

    Article  PubMed Central  PubMed  Google Scholar 

  • Bachlava E, Dewey RE, Burton JW, Cardinal AJ (2009) Mapping and comparison of quantitative trait loci for oleic acid seed content in two segregating soybean populations. Crop Sci 49:433–442

    Article  CAS  Google Scholar 

  • Baud S, Lepiniec L (2010) Physiological and developmental regulation of seed oil production. Prog Lipid Res 49:235–249

    Article  CAS  PubMed  Google Scholar 

  • Baud S, Dubreucq B, Miquel M, Rochat C, Lepiniec L (2008) Storage reserve accumulation in Arabidopsis: metabolic and developmental control of seed filling, vol 6. The Arabidopsis book/American Society of Plant Biologists, Rockville. doi:10.1199/tab.0113

  • Bolon YT, Joseph B, Cannon SB, Graham MA, Diers BW, Farmer AD, May GD, Muehlbauer GJ, Specht JE, Tu ZJ et al. (2010) Complementary genetic and genomic approaches help characterize the linkage group I seed protein QTL in soybean. BMC Plant Biol 10:41

    Article  PubMed Central  PubMed  Google Scholar 

  • Brummer EC, Graef GL, Orf J, Wilcox JR, Shoemaker RC (1997) Mapping QTL for seed protein and oil content in eight soybean populations. Crop Sci 37:370–378

    Article  Google Scholar 

  • Burton JW (1985) Breeding soybeans for improved protein quantity and quality. In: Shibles R (ed) Proceedings 3rd World Soybean Res. Conf., Westview Press, Boulder, pp 361–367

  • Chen M, Mooney BP, Hajduch M, Joshi T, Zhou M, Xu D, Thelen JJ (2009) System analysis of an Arabidopsis mutant altered in de novo fatty acid synthesis reveals diverse changes in seed composition and metabolism. Plant Physiol 150:27–41

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chourey PS, Li QB, Cevallos-Cevallos J (2012) Pleiotropy and its dissection through a metabolic gene Miniature1 (Mn1) that encodes a cell wall invertase in developing seeds of maize. Plant Sci 184:45–53

    Article  CAS  PubMed  Google Scholar 

  • Chung J, Babka HL, Graef GL, Staswick PE, Lee DJ, Cregan PB, Shoemaker RC, Specht JE (2003) The seed protein, oil, and yield QTL on soybean linkage group I. Crop Sci 43:1053–1067

    Article  CAS  Google Scholar 

  • Clemente TE, Cahoon EB (2009) Soybean oil: genetic approaches for modification of functionality and total content. Plant Physiol 151:1030–1040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cui Z, Carter TE, Burton JW, Wells R (2001) Phenotypic diversity of modern Chinese and North American soybean cultivars. Crop Sci 41:1954–1967

    Article  Google Scholar 

  • De Smet R, Adams KL, Vandepoele K, Van Montagu MC, Maere S, Van de Peer Y (2013) Convergent gene loss following gene and genome duplications creates single-copy families in flowering plants. Proc Natl Acad Sci 110:2898–2903

    Article  PubMed Central  PubMed  Google Scholar 

  • Diebold R, Schuster J, Däschner K, Binder S (2002) The branched-chain amino acid transaminase gene family in Arabidopsis encodes plastid and mitochondrial proteins. Plant Physiol 129:540–550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dornbos DL Jr, Mullen RE (1991) Influence of stress during soybean seed fill on seed weight, germination, and seedling growth rate. Can J Plant Sci 71:373–383

    Article  Google Scholar 

  • Fischer WN, André B, Rentsch D, Krolkiewicz S, Tegeder M, Breitkreuz K, Frommer WB (1998) Amino acid transport in plants. Trends Plant Sci 3:188–195

    Article  Google Scholar 

  • Hymowitz T, Collins FI, Panczner J, Walker WM (1972) Relationship between the content of oil, protein, and sugar in soybean seed. Agron J 64:613–616

    Article  CAS  Google Scholar 

  • Jones SI, Vodkin LO (2013) Using RNA-Seq to profile soybean seed development from fertilization to maturity. PLoS One 8:e59270

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013a) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim MY, Kang YJ, Lee T, Lee S-H (2013b) Divergence of flowering-related genes in three legume species. Plant Genome 6:1–12

    Article  CAS  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee S-H, Bailey MA, Mian MAR, Carter TE Jr, Shipe ER, Ashley DA, Parrott WA, Hussey RS, Boerma HR (1996) RFLP loci associated with soybean seed protein and oil content across populations and locations. Theor Appl Genet 93:649–657

    Article  CAS  PubMed  Google Scholar 

  • Li H, Zhao T, Wang Y, Yu D, Chen S, Zhou R, Gai J (2011) Genetic structure composed of additive QTL, epistatic QTL pairs and collective unmapped minor QTL conferring oil content and fatty acid components of soybeans. Euphytica 182:117–132

    Article  Google Scholar 

  • Los DA, Murata N (1998) Structure and expression of fatty acid desaturases. Biochim Biophys Acta-Lipids Lipid Metab 1394:3–15

    Article  CAS  Google Scholar 

  • Lynch M, Force AG (2000) The origin of interspecific genomic incompatibility via gene duplication. Am Nat 156:590–605

    Article  Google Scholar 

  • Masuda T, Goldsmith PD (2009) World soybean production: area harvested, yield, and long-term projections. Int Food Agribus Manag Rev 12:143–162

    Google Scholar 

  • Mazarei M, Lennon KA, Puthoff DP, Rodermel SR, Baum TJ (2003) Expression of an Arabidopsis phosphoglycerate mutase homologue is localized to apical meristems, regulated by hormones, and induced by sedentary plant-parasitic nematodes. Plant Mol Biol 53:513–530

    Article  CAS  PubMed  Google Scholar 

  • Meinke DW, Chen J, Beachy RN (1981) Expression of storage-protein genes during soybean seed development. Planta 153:130–139

    Article  CAS  PubMed  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Ohta D, Fujimori K, Mizutani M, Nakayama Y, Kunpaisal-Hashimoto R, Münzer S, Kozaki A (2000) Molecular cloning and characterization of ATP-phosphoribosyl transferase from Arabidopsis, a key enzyme in the histidine biosynthetic pathway. Plant Physiol 122:907–914

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Panthee DR, Pantalone VR, West DR, Saxton AM, Sams CE (2005) Quantitative trait loci for seed protein and oil concentration, and seed size in soybean. Crop Sci 45:2015–2022

    Article  CAS  Google Scholar 

  • Panthee DR, Pantalone VR, Sams CE, Saxton AM, West DR, Orf JH, Killam AS (2006a) Quantitative trait loci controlling sulfur containing amino acids, methionine and cysteine, in soybean seeds. Theor Appl Genet 112:546–553

    Article  CAS  PubMed  Google Scholar 

  • Panthee DR, Pantalone VR, Saxton AM, West DR, Sams CE (2006b) Genomic regions associated with amino acid composition in soybean. Mol Breed 17:79–89

    Article  CAS  Google Scholar 

  • Qi ZM, Wu Q, Han X, Sun YN, Du XY, Liu CY, Jiang HW, Hu GH, Chen QS (2011) Soybean oil content QTL mapping and integrating with meta-analysis method for mining genes. Euphytica 179:499–514

    Article  Google Scholar 

  • Roberts A, Pimentel H, Trapnell C, Pachter L (2011) Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics 27:2325–2329

    Article  CAS  PubMed  Google Scholar 

  • Rose AB, Li J, Last RL (1997) An allelic series of blue fluorescent trp1 mutants of Arabidopsis thaliana. Genetics 145:197–205

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J et al. (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  PubMed  Google Scholar 

  • Scrimgeour C (2005) Chemistry of fatty acids. In: Shahidi F (ed) Bailey’s industrial oil and fat products, 6th edn. Wiley, New Jersey, pp 1–43

    Google Scholar 

  • Sebolt AM, Shoemaker RC, Diers BW (2000) Analysis of a quantitative trait locus allele from wild soybean that increases seed protein concentration in soybean. Crop Sci 40:1438–1444

    Article  CAS  Google Scholar 

  • Severin AJ, Woody JL, Bolon YT, Joseph B, Diers BW, Farmer AD, Muehlbauer GJ, Nelson RT, Grant D, Specht JE, Graham MA, Cannon SB, May GD, Vance CP, Shoemaker RC (2010) RNA-Seq Atlas of Glycine max: a guide to the soybean transcriptome. BMC Plant Biol 10:160

    Article  PubMed Central  PubMed  Google Scholar 

  • Soupene E, Kuypers FA (2008) Mammalian long-chain acyl-CoA synthetases. Exp Biol Med 233:507–521

    Article  CAS  Google Scholar 

  • Specht JE, Chase K, Macrander M, Graef GL, Chung J, Markwell JP, Germann M, Orf JH, Lark KG (2001) Soybean response to water. Crop Sci 41:493–509

    Article  CAS  Google Scholar 

  • Tajuddin T, Watanabe S, Yamanaka N, Harada K (2003) Analysis of quantitative trait loci for protein and lipid contents in soybean seeds using recombinant inbred lines. Breed Sci 53:133–140

    Article  CAS  Google Scholar 

  • Vigeolas H, Waldeck P, Zan Weichert KT, Geigenberger P (2007) Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter. Plant Biotechnol J 5:431–441

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wang X, Paterson AH (2012) Genome and gene duplications and gene expression divergence: a view from plants. Ann NY Acad Sci 1256:1–14

    Article  PubMed  Google Scholar 

  • Weber H, Borisjuk L, Wobus U (1997) Sugar import and metabolism during seed development. Trends Plant Sci 22:169–174

    Article  Google Scholar 

  • Weber H, Borisjuk L, Wobus U (2005) Molecular physiology of legume seed development. Ann Rev Plant Biol 56:253–279

    Article  CAS  Google Scholar 

  • Weichert N, Saalbach I, Weichert H, Kohl S, Erban A, Kopka J, Weber H (2010) Increasing sucrose uptake capacity of wheat grains stimulates storage protein synthesis. Plant Physiol 152:698–710

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilcox JR (1985) The uniform soybean tests. Agronomy department, Purdue university, West Lafayette

    Google Scholar 

  • Winkler ME (1987) Biosynthesis of histidine. Escherichia coli and Salmonella typhimurium. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE (eds) Cellular and Molecular Biology. American Society for Microbiology, Washington, pp 395–411

    Google Scholar 

  • Yamauchi Y, Hasegawa A, Taninaka A, Mizutani M, Sugimoto Y (2011) NADPH-dependent reductases involved in the detoxification of reactive carbonyls in plants. J Biol Chem 286:6999–7009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang W, Simpson JP, Li-Beisson Y, Beisson F, Pollard M, Ohlrogge JB (2012) A land-plant-specific glycerol-3-phosphate acyltransferase family in Arabidopsis: substrate specificity, sn-2 preference, and evolution. Plant Physiol 160:638–652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang ZZ, Li XX, Zhu BQ, Wen YQ, Duan CQ, Pan QH (2011) Molecular characterization and expression analysis on two isogenes encoding 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase in grapes. Mol Biol Rep 38:4739–4747

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Yi L, Lin Y, Zhang L, Shao Z, Liu Z (2014) Characterization and site-directed mutagenesis of a novel class II 5-enopyruvylshikimate-3-phosphate (EPSP) synthase from the deep-sea bacterium Alcanivorax sp. L27. Enzym Microb Technol 63:64–70

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a Grant from the Next-Generation BioGreen 21 Program (No. PJ00806003) of the Rural Development Administration, Republic of Korea.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suk-Ha Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 900 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, Y.E., Kim, M.Y., Shim, S. et al. Gene expression profiling for seed protein and oil synthesis during early seed development in soybean. Genes Genom 37, 409–418 (2015). https://doi.org/10.1007/s13258-015-0269-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-015-0269-2

Keywords

Navigation