Skip to main content
Log in

Molecular cloning of the duck MEF2C gene cDNA coding domain sequence and its expression during fetal muscle tissue development

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Myogenic enhancer transcription factor 2c (MEF2c), one of the members of the MEF2 family of transcription factors, plays an important role in mammalian muscle development. However, the role of MEF2c in avian muscle development still remains unclear. To understand the function of MEF2c in avian muscle development, we first cloned the duck MEF2c coding domain sequence (CDS) and analyzed MEF2c expression in duck muscle tissues of embryos from 10 days of incubation to 1 week after birth using real-time PCR technology. The results showed that the duck MEF2c CDS consists of 1,398 nucleotides that encode 465 amino acids. The MEF2c duck protein contains a MADS domain, a MEF2 domain and a HJURP_C domain with high homology to related proteins in other organisms. Different expression levels of MEF2c were found in skeletal, smooth and cardiac muscle. Therefore, these results indicated that duck MEF2c has two conserved domains (a MADS and a MEF2 domain), is an indispensable regulator of muscle development, and plays an important role in the development of duck muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albinsson S, Suarez Y, Skoura A, Offermanns S, Miano JM, Sessa WC (2010) MicroRNAs are necessary for vascular smooth muscle growth, differentiation, and function. Arterioscler Thromb Vasc Biol 30:1118–1126

    Article  PubMed  CAS  Google Scholar 

  • Alsan BH, Schultheiss TM (2002) Regulation of avian cardiogenesis by Fgf8 signaling. Development 129:1935–1943

    PubMed  CAS  Google Scholar 

  • Andrés V, Cervera M, Mahdavi V (1995) Determination of the consensus binding site for MEF2 expressed in muscle and brain reveals tissue-specific sequence constraints. J Biol Chem 270:23246–23249

    Article  PubMed  Google Scholar 

  • Arnold MA, Kim Y, Czubryt MP, Phan D, McAnally J, Qi X, Shelton JM, Richardson JA, Bassel-Duby R, Olson EN (2007) MEF2C transcription factor controls chondrocyte hypertrophy and bone development. Dev Cell 12:377–389

    Article  PubMed  CAS  Google Scholar 

  • Bi W, Drake CJ, Schwarz JJ (1999) The transcription factor MEF2C-null mouse exhibits complex vascular malformations and reduced cardiac expression of angiopoietin 1 and VEGF. Dev Biol 211:255–267

    Article  PubMed  CAS  Google Scholar 

  • Black BL, Olson EN (1998) Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol 14:167–196

    Article  PubMed  CAS  Google Scholar 

  • Breitbart RE, Liang C, Smoot LB, Laheru DA, Mahdavi V, Nadal-Ginard B (1993) A fourth human MEF2 transcription factor, hMEF2D, is an early marker of the myogenic lineage. Development 118:1095–1106

    PubMed  CAS  Google Scholar 

  • Buckingham M, Bajard L, Chang T, Daubas P, Hadchouel J, Meilhac S, Montarras D, Rocancourt D, Relaix F (2003) The formation of skeletal muscle: from somite to limb. J Anat 202:59–68

    Article  PubMed  Google Scholar 

  • Chambers A, Kotecha S, Towers N, Mohun T (1992) Muscle-specific expression of SRF-related genes in the early embryo of Xenopus laevis. EMBO J 11:4981–4991

    PubMed  CAS  Google Scholar 

  • Chang S, Young BD, Li S, Qi X, Richardson JA, Olson EN (2006) Histone deacetylase 7 maintains vascular integrity by repressing matrix metalloproteinase 10. Cell 126:321–334

    Article  PubMed  CAS  Google Scholar 

  • Dodou E, Xu SM, Black BL (2003) Mef2c is activated directly by myogenic basic helix-loop-helix proteins during skeletal muscle development in vivo. Mech Dev 120:1021–1032

    Article  PubMed  CAS  Google Scholar 

  • Duband JL, Gimona M, Scatena M, Sartore S, Small JV (1993) Calponin and SM22 as differentiation markers of smooth muscle: spatiotemporal distribution during avian embryonic development. Differentiation 55:1–11

    Article  PubMed  CAS  Google Scholar 

  • Edmondson DG, Lyons GE, Martin JF, Olson EN (1994) Mef2 gene expression marks the cardiac and skeletal muscle lineages during mouse embryogenesis. Development 120:1251–1263

    PubMed  CAS  Google Scholar 

  • Firulli AB, Miano JM, Bi W, Johnson AD, Casscells W, Olson EN, Schwarz JJ (1996) Myocyte enhancer binding factor-2 expression and activity in vascular smooth muscle cells: association with the activated phenotype. Circ Res 78:196–204

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Martinez V, Schoenwolf GC (1993) Primitive-streak origin of the cardiovascular system in avian embryos. Dev Biol 159:706–719

    Article  PubMed  CAS  Google Scholar 

  • Gossett LA, Kelvin DJ, Sternberg E, Olson EN (1989) A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes. Mol Cell Biol 9:5022–5033

    PubMed  CAS  Google Scholar 

  • Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92

    Article  Google Scholar 

  • Han Y, Dennis J, Cohen-Gould L, Bader D, Fischman D (1992) Expression of sarcomeric myosin in the presumptive myocardium of chicken embryos occurs within six hours of myocyte commitment. Dev Dyn 193:257–265

    Article  PubMed  CAS  Google Scholar 

  • Hirsinger E, Malapert P, Dubrulle J, Delfini MC, Duprez D, Henrique D, Ish-Horowicz D, Pourquie O (2001) Notch signalling acts in postmitotic avian myogenic cells to control MyoD activation. Development 128:107–116

    PubMed  CAS  Google Scholar 

  • Holtzer H, Marshall JM Jr, Finck H (1957) An analysis of myogenesis by the use of fluorescent antimyosin. J Cell Biol 3:705–724

    Article  CAS  Google Scholar 

  • Horlick RA, Hobson GM, Patterson JH, Mitchell MT, Benfield PA (1990) Brain and muscle creatine kinase genes contain common TA-rich recognition protein-binding regulatory elements. Mol Cell Biol 10:4826–4836

    PubMed  CAS  Google Scholar 

  • Katsarou K, Tsitoura P, Georgopoulou U (2011) MEK5/ERK5/mef2: a novel signalling pathway affected by hepatitis C virus non-enveloped capsid-like particles. Biochem Biophys Acta 1813:1854–1862

    Article  PubMed  CAS  Google Scholar 

  • Leifer D, Krainc D, Yu YT, McDermott J, Breitbart RE, Heng J, Neve RL, Kosofsky B, Nadal-Ginard B, Lipton SA (1993) MEF2C, a MADS/MEF2-family transcription factor expressed in a laminar distribution in cerebral cortex. Proc Natl Acad Sci USA 90:1546–1550

    Article  PubMed  CAS  Google Scholar 

  • Lin Q, Schwarz J, Bucana C, Olson EN (1997) Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276:1404–1407

    Article  PubMed  CAS  Google Scholar 

  • Lin Q, Lu J, Yanagisawa H, Webb R, Lyons GE, Richardson JA, Olson EN (1998) Requirement of the MADS-box transcription factor MEF2C for vascular development. Development 125:4565–4574

    PubMed  CAS  Google Scholar 

  • Liu HH, Wang JW, Han CC, Jia J, Si JM, Huang KL, Li L, Xu F (2010) Molecular cloning of the duck MyoG and MRF4 genes coding region sequence and their differential expression patterns in the breast and leg muscle during fetal development. Can J Anim Sci 90:179–188

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. Methods 25:402–408

    Google Scholar 

  • Manasek FJ (2005) Embryonic development of the heart I. A light and electron microscopic study of myocardial development in the early chick embryo. J Morphol 125:329–365

    Article  Google Scholar 

  • Martin JF, Schwarz JJ, Olson EN (1993) Myocyte enhancer factor (MEF) 2C: a tissue-restricted member of the MEF-2 family of transcription factors. Proc Natl Acad Sci USA 90:5282–5286

    Article  PubMed  CAS  Google Scholar 

  • Martin J, Miano J, Hustad C, Copeland N, Jenkins N, Olson E (1994) A Mef2 gene that generates a muscle-specific isoform via alternative mRNA splicing. Mol Cell Biol 14:1647–1656

    PubMed  CAS  Google Scholar 

  • McDermott J, Cardoso M, Yu Y, Andres V, Leifer D, Krainc D, Lipton S, Nadal-Ginard B (1993) hMEF2C gene encodes skeletal muscle-and brain-specific transcription factors. Mol Cell Biol 13:2564–2577

    PubMed  CAS  Google Scholar 

  • Molkentin JD, Black BL, Martin JF, Olson EN (1995) Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell 83:1125–1136

    Article  PubMed  CAS  Google Scholar 

  • Molkentin JD, Black BL, Martin JF, Olson EN (1996) Mutational analysis of the DNA binding, dimerization, and transcriptional activation domains of MEF2C. Mol Cell Biol 16:2627–2636

    PubMed  CAS  Google Scholar 

  • Olson EN (1993) Regulation of muscle transcription by the MyoD family. The heart of the matter. Circ Res 72:1–6

    Article  PubMed  CAS  Google Scholar 

  • Ott MO, Bober E, Lyons G, Arnold H, Buckingham M (1991) Early expression of the myogenic regulatory gene, myf-5, in precursor cells of skeletal muscle in the mouse embryo. Development 111:1097–1107

    PubMed  CAS  Google Scholar 

  • Pagiatakis C, Gordon J, Ehyai S, McDermott J (2012) A novel RhoA/ROCK-CPI-17-MEF2C signaling pathway regulates vascular smooth muscle cell gene expression. J Biol Chem 287:8361–8370

    Article  PubMed  CAS  Google Scholar 

  • Pane LS, Zhang Z, Ferrentino R, Huynh T, Cutillo L, Baldini A (2012) Tbx1 is a negative modulator of Mef2c. Hum Mol Genet 21:2485–2496

    Article  PubMed  CAS  Google Scholar 

  • Pollock R, Treisman R (1991) Human SRF-related proteins: DNA-binding properties and potential regulatory targets. Genes Dev 5:2327–2341

    Article  PubMed  CAS  Google Scholar 

  • Potthoff MJ, Olson EN (2007) MEF2: a central regulator of diverse developmental programs. Development 134:4131–4140

    Article  PubMed  CAS  Google Scholar 

  • Potthoff MJ, Arnold MA, McAnally J, Richardson JA, Bassel-Duby R, Olson EN (2007) Regulation of skeletal muscle sarcomere integrity and postnatal muscle function by Mef2c. Mol Cell Biol 27:8143–8151

    Article  PubMed  CAS  Google Scholar 

  • Rugh R (1968) The mouse: its reproduction and development. Burgess Publishing Company, Minneapolis, p 430

    Google Scholar 

  • Schultheiss TM, Xydas S, Lassar AB (1995) Induction of avian cardiac myogenesis by anterior endoderm. Development 121:4203–4214

    PubMed  CAS  Google Scholar 

  • Shore P, Sharrocks AD (1995) The MADS-box family of transcription factors. Eur J Biochem 229:1–13

    Article  PubMed  CAS  Google Scholar 

  • Shum A, Mahendradatta T, Taylor RJ, Painter AB, Moore MM, Tsoli M, Tan TC, Clarke SJ, Robertson GR, Polly P (2012) Disruption of MEF2C signaling and loss of sarcomeric and mitochondrial integrity in cancer-induced skeletal muscle wasting. Aging 4:133–143

    PubMed  CAS  Google Scholar 

  • Smith TH, Kachinsky AM, Miller JB (1994) Somite subdomains, muscle cell origins, and the four muscle regulatory factor proteins. J Cell Biol 127:95–105

    Article  PubMed  CAS  Google Scholar 

  • Swanson BJ, Jäck HM, Lyons GE (1998) Characterization of myocyte enhancer factor 2 (MEF2) expression in B and T cells: MEF2C is a B cell-restricted transcription factor in lymphocytes. Mol Immunol 35:445–458

    Article  PubMed  CAS  Google Scholar 

  • Vong L, Bi W, O’Connor-Halligan KE, Li C, Cserjesi P, Schwarz JJ (2006) MEF2C is required for the normal allocation of cells between the ventricular and sinoatrial precursors of the primary heart field. Dev Dyn 235:1809–1821

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Sigmund C, Lin JJC (2000) Identification of cis elements in the cardiac troponin T gene conferring specific expression in cardiac muscle of transgenic mice. Circ Res 86:478–484

    Article  PubMed  CAS  Google Scholar 

  • Wang DZ, Valdez MR, McAnally J, Richardson J, Olson EN (2001) The Mef2c gene is a direct transcriptional target of myogenic bHLH and MEF2 proteins during skeletal muscle development. Development 128:4623–4633

    PubMed  CAS  Google Scholar 

  • Wu H, Naya FJ, McKinsey TA, Mercer B, Shelton JM, Chin ER, Simard AR, Michel RN, Bassel-Duby R, Olson EN (2000) MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. EMBO J 19:1963–1973

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Dey R, Han A, Jayathilaka N, Philips M, Ye J, Chen L (2010) Structure of the MADS-box/MEF2 domain of MEF2A bound to DNA and its implication for myocardin recruitment. J Mol Biol 397:520–533

    Article  PubMed  CAS  Google Scholar 

  • Yang JH, Choi JH, Jang H, Park JY, Han JW, Youn HD, Cho EJ (2011) Histone chaperones cooperate to mediate Mef2-targeted transcriptional regulation during skeletal myogenesis. Biochem Biophys Res Commun 407:541–547

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Breitbart R, Smoot L, Lee Y, Mahdavi V, Nadal-Ginard B (1992) Human myocyte-specific enhancer factor 2 comprises a group of tissue-restricted MADS box transcription factors. Genes Dev 6:1783–1798

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Zhou Y, Zhu J, Xu Q (2012) An updated view on stem cell differentiation into smooth muscle cells. Vascul Pharmacol 56:280–287

    Article  PubMed  CAS  Google Scholar 

  • Zhu B, Ramachandran B, Gulick T (2005) Alternative pre-mRNA splicing governs expression of a conserved acidic transactivation domain in myocyte enhancer factor 2 factors of striated muscle and brain. J Biol Chem 280:28749–28760

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the National High Technology Research and Development Program of China (No. 2010AA10A109), the National Waterfowl Industrial Technology System (No. CARS-43-6) and the Program for Technology Innovative Research Team of Sichuan Province of China (2011JTD0032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-wen Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1723 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, LL., Liu, Hh., Wang, Hh. et al. Molecular cloning of the duck MEF2C gene cDNA coding domain sequence and its expression during fetal muscle tissue development. Genes Genom 35, 317–325 (2013). https://doi.org/10.1007/s13258-013-0086-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-013-0086-4

Keywords

Navigation