Skip to main content
Log in

A novel extrapolation method using OSL detectors for very small field output factor measurement for stereotactic radiosurgery

  • Scientific Paper
  • Published:
Physical and Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Appropriate methods for the determination of very small X-ray beam output factors are essential to ensure correct clinical outcomes for stereotactic radiosurgery. To date, substantial work has been performed in identifying and quantifying suitable dosimeters for relative output factor (ROF) measurements including recent IAEA published recommendations. In this work, we provide a novel method using optically stimulated luminescent dosimeters (OSLDs) with different effective sizes of the readout area to determine ROFs. This involves applying an extrapolation technique to assess ROFs for 6MV SRS X-ray beams with field diameters ranging from 4 to 30 mm as defined by the Brainlab SRS cones. By combining the use of multiple sized OSLDs and water droplets to remove air gaps located around the OSLD detectors, both volume averaging and density variation effects were minimised to estimate ROFs for an extrapolated zero volume detector. The measured results showed that for a 4 mm diameter cone, the ROF was 0.660 ± 0.032 (2SD) as compared to 0.661 ± 0.01 and 0.651 ± 0.018 for the PTW 600019 microDiamond detector and Gafchromic EBT3 film respectively. Whilst the uncertainties were larger than conventional detectors, the technique shows promise and improvements in accuracy may be obtained by higher quality manufacturing techniques. Based on these results, using OSLDs with different effective sizes of readout area and an extrapolation technique shows promise for use as an independent verification tool for very small X-ray field ROFs in the clinical department.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Andreo P (2017) The physics of small megavoltage photon beam dosimetry. Radiother Oncol 126:205–213

    Article  Google Scholar 

  2. Das IJ, Morales J, Francescon P (2016) Small field dosimetry: what have we learnt? In: MassillonJl G, Fossion R, RosadoMendez IM, AvilaRodriguez MA, LopezPerez DA (eds) Medical physics: fourteenth Mexican symposium on medical physics, vol 1747. AIP Publishing, Melville

    Google Scholar 

  3. Das IJ, Ding GX, Ahnesjo A (2008) Small fields: nonequilibrium radiation dosimetry. Med Phys 35:206–215

    Article  Google Scholar 

  4. Kumar S, Fenwick JD, Underwood TS, Deshpande DD, Scott AJ, Nahum AE (2015) Breakdown of Bragg-Gray behaviour for low-density detectors under electronic disequilibrium conditions in small megavoltage photon fields. Phys Med Biol 60:8187–8212

    Article  CAS  Google Scholar 

  5. Azangwe G, Grochowska P, Georg D, Izewska J, Hopfgartner J, Lechner W, Andersen CE, Beierholm AR, Helt-Hansen J, Mizuno H (2014) Detector to detector corrections: a comprehensive experimental study of detector specific correction factors for beam output measurements for small radiotherapy beams. Med Phys 41:072103

    Article  Google Scholar 

  6. Benmakhlouf H, Sempau J, Andreo P (2014) Output correction factors for nine small field detectors in 6 MV radiation therapy photon beams: a PENELOPE Monte Carlo study. Med Phys 41:041711

    Article  Google Scholar 

  7. Chalkley A, Heyes G (2014) Evaluation of a synthetic single-crystal diamond detector for relative dosimetry measurements on a CyberKnife™. Br J Radiol 87:20130768

    Article  CAS  Google Scholar 

  8. Charles P, Cranmer-Sargison G, Thwaites DI, Crowe S, Kairn T, Knight R, Kenny J, Langton CM, Trapp J (2014) A practical and theoretical definition of very small field size for radiotherapy output factor measurements. Med Phys 41:041707

    Article  CAS  Google Scholar 

  9. Morales J, Hill R, Crowe S, Kairn T, Trapp J (2014) A comparison of surface doses for very small field size x-ray beams: Monte Carlo calculations and radiochromic film measurements. Australas Phys Eng Sci Med 37:303–309

    Article  CAS  Google Scholar 

  10. Morales JE, Butson M, Crowe SB, Hill R, Trapp J (2016) An experimental extrapolation technique using the Gafchromic EBT3 film for relative output factor measurements in small X-ray fields. Med Phys 43:4687–4692

    Article  Google Scholar 

  11. Morales JE, Crowe SB, Hill R, Freeman N, Trapp J (2014) Dosimetry of cone-defined stereotactic radiosurgery fields with a commercial synthetic diamond detector. Med Phys 41:111702

    Article  Google Scholar 

  12. Papaconstadopoulos P, Tessier F, Seuntjens J (2014) On the correction, perturbation and modification of small field detectors in relative dosimetry. Phys Med Biol 59:5937

    Article  CAS  Google Scholar 

  13. Scott AJ, Kumar S, Nahum AE, Fenwick JD (2012) Characterizing the influence of detector density on dosimeter response in non-equilibrium small photon fields. Phys Med Biol 57:4461

    Article  Google Scholar 

  14. McKerracher C, Thwaites D (1999) Assessment of new small-field detectors against standard-field detectors for practical stereotactic beam data acquisition. Phys Med Biol 44:2143

    Article  CAS  Google Scholar 

  15. Francescon P, Kilby W, Satariano N (2014) Monte Carlo simulated correction factors for output factor measurement with the CyberKnife system—results for new detectors and correction factor dependence on measurement distance and detector orientation. Phys Med Biol 59:N11

    Article  CAS  Google Scholar 

  16. Azangwe G, Grochowska P, Georg D, Izewska J, Hopfgartner J, Lechner W, Andersen CE, Beierholm AR, Helt-Hansen J, Mizuno H, Fukumura A, Yajima K, Gouldstone C, Sharpe P, Meghzifene A, Palmans H (2014) Detector to detector corrections: a comprehensive experimental study of detector specific correction factors for beam output measurements for small radiotherapy beams. Med Phys 41:072103

    Article  Google Scholar 

  17. Alfonso R, Andreo P, Capote R, Huq MS, Kilby W, Kjäll P, Mackie T, Palmans H, Rosser K, Seuntjens J (2008) A new formalism for reference dosimetry of small and nonstandard fields. Med Phys 35:5179–5186

    Article  CAS  Google Scholar 

  18. Palmans H, Andreo P, Huq MS, Seuntjens J, Christaki KE, Meghzifene A (2018) Dosimetry of small static fields used in external photon beam radiotherapy: summary of TRS-483, the IAEA-AAPM international Code of Practice for reference and relative dose determination. Med Phys 45:e1123–e1145

    Article  Google Scholar 

  19. Das IJ (2017) Radiochromic film: role and applications in radiation dosimetry. CRC Press, Boca Raton

    Book  Google Scholar 

  20. Hernández-Guzmán A, Aragón-Martínez N, Gómez-Muñoz A, Massillon-JL G (2016) Absorbed dose distribution in liquid water for a CyberKnife VSI using radiochromic EBT3 film. AIP Conf Proc 1747:060004

    Article  Google Scholar 

  21. Bassinet C, Huet C, Derreumaux S, Brunet G, Chéa M, Baumann M, Lacornerie T, Gaudaire-Josset S, Trompier F, Roch P (2013) Small fields output factors measurements and correction factors determination for several detectors for a CyberKnife® and linear accelerators equipped with microMLC and circular cones. Med Phys 40:071725

    Article  CAS  Google Scholar 

  22. Chan MF, Zhang Q, Li J, Parhar P, Schupak K, Burman C (2012) The Verification of iPlan Commissioning by Radiochromic EBT2 Films. Int J Med Phys Clin Eng Radiat Oncol 01(01):7

    Google Scholar 

  23. Hardcastle N, Basavatia A, Bayliss A, Tomé WA (2011) High dose per fraction dosimetry of small fields with Gafchromic EBT2 film. Med Phys 38:4081–4085

    Article  Google Scholar 

  24. Mourya A, Aggarwal LM, Mandal A, Shahi UP, Ram C, Asthana AK, Pradhan S (2018) An inexpensive method of small photon field dosimetry with EBT3 radiochromic film. Health Technol 8:1–7

    Article  Google Scholar 

  25. Kairn T, Crowe S, Kenny J, Trapp J (2011) Investigation of stereotactic radiotherapy dose using dosimetry film and Monte Carlo simulations. Radiat Meas 46:1985–1988

    Article  CAS  Google Scholar 

  26. Butson M, Chen T, Alzaidi S, Pope D, Butson E, Gorjiara T, Poder J, Cho G, Gill S, Morales J (2016) Extrapolated skin dose assessment with optically stimulated luminescent dosimeters. Biomed Phys Eng Express 2:047001

    Article  Google Scholar 

  27. Butson M, Haque M, Smith L, Butson E, Odgers D, Pope D, Gorjiana T, Whitaker M, Morales J, Hong A (2017) Practical time considerations for optically stimulated luminescent dosimetry (OSLD) in total body irradiation. Australas Phys Eng Sci Med 40:167–171

    Article  Google Scholar 

  28. Lehmann J, Dunn L, Lye JE, Kenny JW, Alves AD, Cole A, Asena A, Kron T, Williams IM (2014) Angular dependence of the response of the nanoDot OSLD system for measurements at depth in clinical megavoltage beams. Med Phys 41:061712

    Article  Google Scholar 

  29. Yukihara E, McKeever S (2008) Optically stimulated luminescence (OSL) dosimetry in medicine. Phys Med Biol 53:R351

    Article  CAS  Google Scholar 

  30. Yukihara EG, McKeever SW, Akselrod MS (2014) State of art: Optically stimulated luminescence dosimetry–Frontiers of future research. Radiat Meas 71:15–24

    Article  CAS  Google Scholar 

  31. Pham C, Alvarez P, Kry S, Luo D, Stingo F, Followill D (2013) SU-E-T-56: Characterization of OSLDs for use in small field photon beam dosimetry. Med Phys 40:216–216

    Article  Google Scholar 

  32. Jursinic PA (2010) Changes in optically stimulated luminescent dosimeter (OSLD) dosimetric characteristics with accumulated dose. Med Phys 37:132

    Article  CAS  Google Scholar 

  33. Oliver CP, Butler DJ, Takau V, Williams I (2018) Survey of 5 mm small-field output factor measurements in Australia. J Appl Clin Med Phys 19:329–337

    Article  Google Scholar 

  34. De Coste V, Francescon P, Marinelli M, Masi L, Paganini L, Pimpinella M, Prestopino G, Russo S, Stravato A, Verona C (2017) Is the PTW 60019 microDiamond a suitable candidate for small field reference dosimetry? Phys Med Biol 62:7036

    Article  Google Scholar 

  35. Russo S, Reggiori G, Cagni E, Clemente S, Esposito M, Falco MD, Fiandra C, Giglioli FR, Marinelli M, Marino C (2016) Small field output factors evaluation with a microDiamond detector over 30 Italian centers. Physica Med 32:1644–1650

    Article  Google Scholar 

  36. Masi L, Russo S, Francescon P, Doro R, Frassanito MC, Fumagalli ML, Reggiori G, Marinelli M, Redaelli I, Pimpinella M (2016) CyberKnife beam output factor measurements: a multi-site and multi-detector study. Physica Med 32:1637–1643

    Article  Google Scholar 

  37. Charles PH, Crowe SB, Kairn T, Kenny J, Lehman J, Lye J, Dunn L, Hill B, Knight RT, Langton CM, Trapp JV (2012) The effect of very small air gaps on small field dosimetry. Phys Med Biol 57(21):6947–6960

    Article  CAS  Google Scholar 

Download references

Funding

None of the authors received any funding of any kind for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johnny E. Morales.

Ethics declarations

Conflict of interest

None of the authors declares any conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, TA.P., Morales, J.E., Butson, E. et al. A novel extrapolation method using OSL detectors for very small field output factor measurement for stereotactic radiosurgery. Phys Eng Sci Med 43, 593–599 (2020). https://doi.org/10.1007/s13246-020-00859-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-020-00859-2

Keywords

Navigation