Skip to main content
Log in

Multi-Objective Optimization Design of Balloon-Expandable Coronary Stent

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

Recent studies suggested that suboptimal delivery and longitudinal stent deformation can result in in-stent restenosis. Therefore, the purpose of this paper was to study the effect of stent geometry on stent flexibility and longitudinal stiffness (LS) and optimize the two metrics simultaneously. Then, the reliable and accurate relationships between metrics and design variables were established.

Methods

A multi-objective optimization method based on finite element analysis was proposed for the investigation and improvement of stent flexibility and LS. The relative influences of design variables on the two metrics were evaluated on the basis of the main effects. Three surrogate models, namely, the response surface model (RSM), radial basis function neural network (RBF), and Kriging were employed and compared.

Results

The accuracies of the three models in fitting flexibility were nearly similar, although Kriging made more accurate prediction in LS. The link width played important roles in flexibility and LS. Although the flexibility of the optimal stent decreased by 13%, the LS increased by 48.3%.

Conclusions

The obtained results showed that the multi-objective optimization method is efficient in predicting an optimal stent design. The method presented in this paper can be useful in optimizing stent design and improving the comprehensive mechanical properties of stents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Azaouzi, M., N. Lebaal, A. Makradi, and S. Belouettar. Optimization based simulation of self-expanding nitinol stent. Mater. Des. 50(17):917–928, 2013.

    Article  Google Scholar 

  2. Bressloff, N. W., G. Ragkousis, and N. Curzen. Design optimisation of coronary artery stent systems. Ann. Biomed. Eng. 44(2):357–367, 2016.

    Article  Google Scholar 

  3. Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE T Evol. Comput. 6(2):182–197, 2002.

    Article  Google Scholar 

  4. Demanget, N., P. Latil, L. Orgeas, P. Badel, S. Avril, C. Geindreau, J. N. Albertini, and J. P. Favre. Severe bending of two aortic stent-grafts: an experimental and numerical mechanical analysis. Ann. Biomed. Eng. 40(12):2674–2686, 2012.

    Article  Google Scholar 

  5. Eshghi, N., M. H. Hojjati, M. Imani, and A. M. Goudarzi. Finite element analysis of mechanical behaviors of coronary stent. Procedia Eng. 10(2):3056–3061, 2011.

    Article  Google Scholar 

  6. Foin, N., C. D. Mario, D. P. Francis, and J. E. Davies. Stent flexibility versus concertina effect: mechanism of an unpleasant trade-off in stent design and its implications for stent selection in the cath-lab. Int. J. Cardiol. 164(3):259–261, 2013.

    Article  Google Scholar 

  7. Gundert, T. J., A. L. Marsden, W. Yang, and J. F. LaDisa. Optimization of cardiovascular stent design using computational fluid dynamics. J. Biomech. Eng. 134(1):031002, 2012.

    Article  Google Scholar 

  8. Hanratty, C. G., and S. J. Walsh. Longitudinal compression: a new complication with modern coronary stent platforms-time to think beyond deliverability? Eurointervention. 7(7):872–877, 2011.

    Article  Google Scholar 

  9. Hsiao, H. M., C. T. Yeh, C. Wang, L. Chao, and D. Li. Effects of stent design on new clinical issue of longitudinal stent compression in interventional cardiology. Biomed. Microdevices. 16(4):599–607, 2014.

    Article  Google Scholar 

  10. Imani, M. Simulation of mechanical behaviors of NIR stent in a stenotic artery using finite element method. World Appl. Sci. J. 22(7):892–897, 2013.

    Google Scholar 

  11. Imani, S. M., A. M. Goudarzi, S. E. Ghasemi, A. Kalani, and J. Mahdinejad. Analysis of the stent expansion in a stenosed artery using finite element method: Application to stent versus stent study. Proc. Inst. Mech. Eng. Part H: J Eng. Med. 228(10):996–1004, 2014.

    Article  Google Scholar 

  12. Imani, M., A. M. Goudarzi, and M. H. Hojjati. Finite element analysis of mechanical behaviors of multi-link stent in a coronary artery with plaque. World Appl. Sci. J. 3(21):1597–1602, 2013.

    Google Scholar 

  13. Imani, S. M., A. M. Goudarzi, P. Valipour, M. Barzegar, J. Mahdinejad, and S. E. Ghasemi. Application of finite element method to comparing the NIR stent with the multi-link stent for narrowings in coronary arteries. Acta Mech. Solida Sin. 28(5):605–612, 2015.

    Article  Google Scholar 

  14. Jones, D., M. Schonlau, and W. Welch. Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13(4):455–492, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  15. Ju, F., Z. Xia, and C. Zhou. Repeated unit cell (RUC) approach for pure bending analysis of coronary stents. Comput. Method Biomech. Biomed. Eng. 11(4):419–431, 2008.

    Article  Google Scholar 

  16. Kwok, O. H. Stent concertina: stent design does matter. J. Invasive Cardiol. 25(6):114–119, 2013.

    Google Scholar 

  17. Maleckis, K., P. Deegan, W. Poulson, C. Sievers, A. Desyatova, J. MacTaggart, and A. Kamenskiy. Comparison of femoroapopliteal artery stents under axial and radial compression, axial tension, bending, and torsion deformations. J. Mech. Behav. Biomed. 75:160–168, 2017.

    Article  Google Scholar 

  18. Matheron, G. Principles of geostatistics. Econ. Geol. 58(8):1246–1266, 1963.

    Article  Google Scholar 

  19. Morris, M. D., and T. J. Mitchell. Exploratory designs for computational experiments. J. Stat. Plan Inference 43(3):381–402, 1995.

    Article  MATH  Google Scholar 

  20. Murphy, E. A., and F. J. Boyle. Reducing in-stent restenosis through novel stent flow field augmentation. Cardiovasc. Eng. Technol. 3(4):353–373, 2012.

    Article  Google Scholar 

  21. Myers, R. H., and D. C. Montgomery. Response surface methodology: process and product optimization using designed experiment. J. Stat. Plan Inference 59:185–186, 1995.

    MATH  Google Scholar 

  22. Ni, Z., X. Gu, and Y. Wang. Rapid prediction method for nonlinear expansion process of medical vascular stent. Sci China Ser E: Technol Sci. 52(5):1323–1330, 2009.

    Article  Google Scholar 

  23. Ni, X., C. Pan, and P. B. Gangadhara. Numerical investigations of the mechanical properties of a braided non-vascular stent design using finite element method. Comput. Methods Biomech. Biomed. Eng. 18(10):1117–1125, 2015.

    Article  Google Scholar 

  24. Ni, X., G. Wang, Z. Long, and C. Pan. Analysis of mechanical performance of braided esophageal stent structure and its wires. J. Southeast Univ. (English Ed) 28(4):457–463, 2012.

    Google Scholar 

  25. Ni, X., Y. Zhang, H. Zhao, and C. Pan. Numerical research on the biomechanical behaviour of braided stents with different end shapes and stent-oesophagus interaction. Int. J. Numer. Method Biomed. Eng. 34(6):e2971, 2018.

    Article  Google Scholar 

  26. Ormiston, J. A., B. Webber, and M. W. Webster. Stent longitudinal integrity: bench insights into a clinical problem. Jacc-Cardiovasc Int. 4(12):1310–1317, 2011.

    Article  Google Scholar 

  27. Pant, S., N. W. Bressloff, and G. Limbert. Geometry parameterization and multidisciplinary constrained optimisation of coronary stents. Biomech. Model. Mechanobiol. 11(1–2):61–82, 2012.

    Article  Google Scholar 

  28. Pant, S., G. Limbert, N. Curzen, and N. W. Bressloff. Multi-objective design optimization of coronary stents. Biomaterials. 32(31):7755–7773, 2011.

    Article  Google Scholar 

  29. Park, J. K., K. S. Lim, I. H. Bae, J. P. Nam, J. H. Cho, C. Choi, J. W. Nah, and M. H. Jeong. Stent linker effect in a porcine coronary restenosis model. J. Mech. Behav. Biomed. 53:68–77, 2016.

    Article  Google Scholar 

  30. Petrini, L., F. Migliavacca, F. Auricchio, and G. Dubini. Numerical investigation of the intravascular coronary stent flexibility. J. Biomech. 37(4):495–501, 2004.

    Article  Google Scholar 

  31. Ragkousis, G. E., N. Curzen, and N. W. Bressloff. Multi-objective optimisation of stent dilation strategy in a patient-specific coronary artery via computational and surrogate modeling. J. Biomech. 49(2):205–215, 2016.

    Article  Google Scholar 

  32. Rigattieri, S., A. Sciahbasi, and P. Loschiavo. The clinical spectrum of longitudinal deformation of coronary stents: from a mere angiographic finding to a severe complication. J. Invasive Cardiol. 25(5):101–105, 2013.

    Google Scholar 

  33. Shen, X., Y. Deng, Z. Xie, S. Ji, and H. Zhu. Flexibility behavior of coronary artery stents: the role of linker investigated with numerical simulation. J. Mech. Med. Biol. 17(08):1750112, 2017.

    Article  Google Scholar 

  34. Shen, X., Z. Xie, Y. Deng, and S. Ji. Effects of metal material stent design parameters on longitudinal stent strength. Key Eng. Mater. 723:299–304, 2017.

    Article  Google Scholar 

  35. Shen, X., H. Yi, and Z. Ni. Multi-objective design optimization of coronary stent mechanical properties. Chin. J. Dial Artif. Organs. 4(3):835–838, 2012.

    Google Scholar 

  36. Simpson, T. W., D. K. J. Lin, and W. Chen. Sampling strategies for computer experiments: design and analysis. Int. J. Reliab. Appl. 2(3):209–240, 2001.

    Google Scholar 

  37. Williams, P. D., M. A. Mamas, K. P. Morgan, M. EI-Omar, B. Clarke, A. Bainbridge, F. Fath-Ordoubadi, and D. G. Fraser. Longitudinal stent deformation: a retrospective analysis of frequency and mechanisms. Eurointervention 8(2):267–274, 2012.

    Article  Google Scholar 

  38. Wu, W., D. Yang, M. Qi, and W. Wang. An FEA method to study flexibility of expanded coronary stents. J. Mater. Process Technol. 184:447–450, 2007.

    Article  Google Scholar 

  39. Zhao, S., L. Gu, and S. R. Foremming. Effects of arterial strain and stress in the prediction of restenosis risk: computer modeling of stent trials. Biomed. Eng. Lett. 2(3):158–163, 2012.

    Article  Google Scholar 

Download references

Acknowledgment

This project is supported by the National Natural Science Foundation of China (51305171), Natural Science Foundation of Jiangsu Province (BK20130525), Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (13KJB460006), China Postdoctoral Science Foundation (2011M500858), Foundation of Jiangsu University (10JDG123) and Project of Jiangsu University for training young backbone teachers.

Conflict of interest

Xiang Shen, Hongfei Zhu, Jiabao Jiang, Yongquan Deng and Song Ji declare that they have no conflict of interest.

Ethical Standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Shen.

Additional information

Associate Editor Dr. Ajit P. Yoganathan and Dr. James E. Moore oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, X., Zhu, H., Jiang, J. et al. Multi-Objective Optimization Design of Balloon-Expandable Coronary Stent. Cardiovasc Eng Tech 10, 10–21 (2019). https://doi.org/10.1007/s13239-019-00401-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-019-00401-w

Keywords

Navigation