Skip to main content

Advertisement

Log in

Alterations of Blood Flow Through Arteries Following Atherectomy and the Impact on Pressure Variation and Velocity

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Simulations were made of the pressure and velocity fields throughout an artery before and after removal of plaque using orbital atherectomy plus adjunctive balloon angioplasty or stenting. The calculations were carried out with an unsteady computational fluid dynamic solver that allows the fluid to naturally transition to turbulence. The results of the atherectomy procedure leads to an increased flow through the stenotic zone with a coincident decrease in pressure drop across the stenosis. The measured effect of atherectomy and adjunctive treatment showed decrease the systolic pressure drop by a factor of 2.3. Waveforms obtained from a measurements were input into a numerical simulation of blood flow through geometry obtained from medical imaging. From the numerical simulations, a detailed investigation of the sources of pressure loss was obtained. It is found that the major sources of pressure drop are related to the acceleration of blood through heavily occluded cross sections and the imperfect flow recovery downstream. This finding suggests that targeting only the most occluded parts of a stenosis would benefit the hemodynamics. The calculated change in systolic pressure drop through the lesion was a factor of 2.4, in excellent agreement with the measured improvement. The systolic and cardiac-cycle-average pressure results were compared with measurements made in a multi-patient study treated with orbital atherectomy and adjunctive treatment. The agreements between the measured and calculated systolic pressure drop before and after the treatment were within 3%. This excellent agreement adds further confidence to the results. This research demonstrates the use of orbital atherectomy to facilitate balloon expansion to restore blood flow and how pressure measurements can be utilized to optimize revascularization of occluded peripheral vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Abraham, J. P., E. M. Sparrow, and R. D. Lovik. Unsteady, three dimensional fluid mechanic analysis of blood flow in plaque-narrowed and plaque-free arteries. Int. J. Heat Mass Transf. 51:5633–5641, 2008.

    Article  MATH  Google Scholar 

  2. Abraham, J. P., J. C. K. Tong, and E. M. Sparrow. Breakdown of laminar pipe flow into transitional intermittency and subsequent attainment of fully developed intermittent or turbulent flow. Num. Heat Transf. B 54:103–115, 2008.

    Article  Google Scholar 

  3. Abraham, J. P., J. C. K. Tong, and E. M. Sparrow. Prediction of laminar-turbulent transition and friction factors in transitional flows. ASME International Congress and Exposition, Boston, MA, October 31–November 5, 2008.

  4. Abraham, J. P., E. M. Sparrow, and J. C. K. Tong. Heat transfer in all pipe flow regimes—laminar, transitional/intermittent, and turbulent. Int. J. Heat Mass Transf. 52:557–563, 2009.

    Article  MATH  Google Scholar 

  5. Abraham, J. P., E. M. Sparrow, J. C. K. Tong, and D. W. Bettenhausen. Internal flows which transit from turbulent through intermittent to laminar. Int. J. Therm. Sci. 49:256–263, 2010.

    Article  Google Scholar 

  6. Abraham, J. P., E. M. Sparrow, and W. J. Minkowycz. Internal-flow nusselt numbers for the low-reynolds-number end of the laminar-to-turbulent transition regime. Int. J. Heat Mass Transf. 54:584–588, 2011.

    Article  MATH  Google Scholar 

  7. Abraham, J. P., E. M. Sparrow, J. M. Gorman, J. R. Stark, and R. E. Kohler. A mass transfer model of temporal drug deposition in artery walls. Int. J. Heat Mass Transf. 59:632–638, 2013.

    Article  Google Scholar 

  8. Abraham, J. P., J. R. Stark, J. M. Gorman, E. M. Sparrow, and R. E. Kohler. A model of drug deposition within artery walls. J. Med. Devices 6:020902, 2013.

    Article  Google Scholar 

  9. Abraham J. P., B. D. Plourde, B. Sun, L. J. Vallez, and C. S. Staniloae. The effect of plaque removal on pressure drop and flowrate through a stenotic lesion. Biol. Med. 8, 2015. Article no. 1000261.

  10. Adams, G., P. Khanna, C. Staniloae, J. P. Abraham, and E. M. Sparrow. Optimal techniques with the diamondback 360 system achieve effective results for the treatment of peripheral arterial disease. J. Cardiovasc. Transl. Res. 4:220–229, 2011.

    Article  Google Scholar 

  11. Albuquerque, D. M. S., J. M. C. Pereira, and J. C. F. Pereira. Residual least-squares error estimate for unstructured h-adaptive meshes. Num. Heat Transf. B 67:187–210, 2015.

    Article  Google Scholar 

  12. Baird, R. N., D. R. Bird, P. C. Clifford, R. J. Lusby, R. Skidmore, and J. P. Woodcock. Upstream stenosis: Its diagnosis by doppler signals form the femoral artery. Arch. Surg. 115:1316–1322, 1980.

    Article  Google Scholar 

  13. Bluestein, D., Y. Alemu, I. Avrahami, M. Gharib, K. Dumont, et al. Influence of microcalcifications on vulnerable plaque mechanics. J. Biomech. 41:1111–1118, 2008.

    Article  Google Scholar 

  14. Caiazzo, A., R. Guibert, Y. Boudjemline, and I. E. Vignon-Clementel. Blood flow simulations for the design of stented valve reducer in enlarged ventricular outflow tracts. Cardiovasc. Eng. Technol. 6:485–500, 2015.

    Article  Google Scholar 

  15. Chaudhury, R. A., V. B. Atlasman, G. Pathangey, N. Pracht, R. J. Adrian, and D. H. Frakes. A high performance pulsatile pump for aortic flow experiments in 3-Dimensional models. Cardiovasc. Eng. Technol. 7(2):148–158, 2016.

    Article  Google Scholar 

  16. Cho, Y., and K. Kensey. Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows. Biorheology 28:241–261, 1991.

    Google Scholar 

  17. Crosetto, P., P. Reymond, S. Deparis, D. Kontaxakis, N. Stergiopulos, and A. Quarteroni. A fluid-structure interaction simulation of aortic blood flow. Comput. Fluids 43:46–57, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  18. Domenichini, F., and G. Pedrizzetti. Asymptotic model of fluid-tissue interaction for mitral valve dynamics. Cardiovasc. Eng. Technol. 6:95–104, 2015.

    Article  Google Scholar 

  19. Ellahi, R., S. Rahman, U. Nadeem, and K. Vafai. The blood flow of Prandtl fluid through a tapered stenosed arteries in permeable walls with magnetic field. Commun. Theor. Phys. 63:353–358, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  20. Friedman, M. H., C. B. Bargeron, and F. F. Mark. Variability of geometry, hemodynamics and intimal response of human arteries. Monogr. Atheroscler. Basel, Karger 15:109–116, 1990.

    Google Scholar 

  21. Gebreegziabher, T., E. M. Sparrow, J. P. Abraham, E. Ayorinde, and T. Singh. High-frequency pulsatile pipe flows encompassing all flow regimes. Num. Heat Transf. A 60:811–826, 2011.

    Article  Google Scholar 

  22. George, S. M., L. M. Eckert, D. R. Martin, and D. P. Giddens. Hemodynamics in normal an diseased livers; applications of image-based computational models. Cardiovasc. Eng. Technol. 6:80–91, 2015.

    Article  Google Scholar 

  23. Gijsen, F., F. van de Vosse, and J. Janssen. The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model. J. Biomech. Eng. 32:601–608, 1999.

    Article  Google Scholar 

  24. Grigoni, M., C. Daniele, M. Umberto, C. Del Gaudio, G. D’Avenio, et al. A mathematical description of blood spiral flow in vessels: application to a numerical study of flow in arterial bending. J. Biomech. Eng. 38:1375–1386, 2005.

    Article  Google Scholar 

  25. Helgeson, Z., J. Jenkins, J. P. Abraham, and E. M. Sparrow. Particle trajectories and agglomeration/accumulation in branching arteries subjected to orbital atherectomy. Open Biomed. Eng. J. 5:25–38, 2011.

    Article  Google Scholar 

  26. Janela, J., A. Moura, and A. Sequeira. A 3D non-Newtonian fluid-structure interaction model for blood flow in arteries. J. Comput. Appl. Mech. 234:2783–2791, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  27. Barth T. J., and D. C. Jesperson. The design and applications of upwind schemes on unstructured meshes. AIAA paper no. 89-03, 1989.

  28. Johnston, B., P. Johnston, S. Corney, and D. Kilpatrick. Non-Newtonian blood flow in human right coronary arteries: Steady state simulations. J. Biomech. Eng. 37:709–720, 2004.

    Article  Google Scholar 

  29. Kao, N. S. C., T. W. H. Sheu, and S. F. Tsai. On a wavenumber optimized streamline upwinding method for solving steady incompressible Navier-Stokes equations. Num. Heat Transf. B 67:75–99, 2015.

    Article  Google Scholar 

  30. Khakpour, M., and K. Vafai. A critical assessment of arterial transport models. Int. J. Heat Mass Transf. 51:807–822, 2008.

    Article  MATH  Google Scholar 

  31. Khaled, A. R. A., and K. Vafai. The role of porous media in modeling flow and heat transfer in biological tissues. Int. J. Heat Mass Transf. 46:4989–5003, 2003.

    Article  MATH  Google Scholar 

  32. Khanafer, K., and K. Vafai. The role of porous media in biomedical engineering as related to magnetic resonance imaging and drug delivery. Heat Mass Transfer 42:939–953, 2006.

    Article  Google Scholar 

  33. Ku, D. N. Blood flow in arteries. Ann. Rev. Fluid Mech. 29:399–434, 1997.

    Article  MathSciNet  Google Scholar 

  34. Kung, E. O., A. S. Les, C. A. Figueroa, F. Medina, K. Arcaute, et al. In vitro validation of finite element analysis of blood flow in deformable models. Ann. Biomed. Eng. 39:1947–1960, 2011.

    Article  Google Scholar 

  35. LaDisa, J., I. Guler, L. Olson, D. Hetterick, J. Kersten, et al. Three-dimensional computational fluid dynamics modeling of alterations in coronary wall shear stress produced by stent implantation. Ann. Biomed. Eng. 31:972–980, 2003.

    Article  Google Scholar 

  36. Li, Z., and C. Kleinstreuer. Blood flow and structure interactions in a stented abdominal aortic aneurysm model. Med. Eng. Phys. 27:369–382, 2005.

    Article  Google Scholar 

  37. Lillie, J. S., A. S. Liberson, D. Mix, K. Q. Schwarz, A. Chandra, D. B. Phillips, S. W. Day, and D. A. Borkholder. Pulse wave velocity prediction and compliance assessment in elastic arterial segments. Cardiovasc. Eng. Technol. 6:49–58, 2015.

    Article  Google Scholar 

  38. Liu Y., F. Wang, and Y. T. Li. Fourier analysis of the SIMPLE serials. Num. Heat Transf. B, 2016 (in press).

  39. Lovik, R. D., J. P. Abraham, W. J. Minkowycz, and E. M. Sparrow. Laminarization and turbulentization in a pulsatile pipe flow. Num. Heat Transf. A 56:861–879, 2009.

    Article  Google Scholar 

  40. Lovik R. D., J. P. Abraham, and E. M. Sparrow. Pulsating fluid flows undergoing transitions between laminar, transitional, and turbulent regimes. ASME 2009 Summer Bioengineering Conference, Lake Tahoe, CA, June 17–21, 2009.

  41. Majumdar, S. Role of underrelaxation in momentum interpolation for calculation of flow with nonstaggered grids. Num. Heat Transf. 13:125–132, 1988.

    Google Scholar 

  42. Malve, M., A. Garcia, J. Ohayon, and M. A. Martinez. Unsteady blood flow and mass transfer of a human left coronary artery bifurcation: FSI vs. CFD. Int. Commun. Heat Mass Transf. 39:745–751, 2012.

    Article  Google Scholar 

  43. Martin, D., and F. Boyle. Sequential structural and fluid dynamics analysis of balloon-expandable coronary stents: a multivariate statistical analysis. Cardiovasc. Eng. Technol. 6:314–328, 2015.

    Article  Google Scholar 

  44. Menter, F. R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J32:1598–1605, 1994.

    Article  Google Scholar 

  45. Menter F. R., T. Esch, and S. Kubacki. Transition modeling based on local variables. In: 5th International Symposium on Engineering Turbulence Modeling and Measurements, Mallorca. Spain, 2002.

  46. Menter F. R., R. Langtry, R. Likki, Y. Suzen, P. Huang, and S. Volker. A correlation–based transition model using local variables, Part I—model formulation. In: Proceedings of ASME Turbo Expo Power for Land, Sea, and Air, Vienna, Austria, June 14–17, 2004.

  47. Menter F. R., R. Langtry, R. Likki, Y. Suzen, P. Huang, and S. Volker. A correlation–based transition model using local variables, Part II—test cases and industrial applications. In: Proceedings of ASME Turbo Expo Power for Land, Sea, and Air, Vienna, Austria, June 14–17, 2004.

  48. Minkowycz, W. J., J. P. Abraham, and E. M. Sparrow. Numerical simulation of laminar breakdown and subsequent intermittent and turbulent flow in parallel plate channels: Effects of inlet velocity profile and turbulence intensity. Int. J. Heat Mass Transf. 52:4040–4046, 2009.

    Article  MATH  Google Scholar 

  49. Muehlhausen, M. P., U. Janoske, and H. Oertel, Jr. Implicit partitioned cardiovascular fluid-structure interaction of the heart cycle using non-Newtonian fluid properties and orthotropic material behavior. Cardiovasc. Eng. Technol. 6:8–18, 2015.

    Article  Google Scholar 

  50. Naughton, N. M., B. D. Plourde, J. R. Stark, S. Hodis, and J. P. Abraham. Impacts of waveforms on the fluid flow, wall shear stress, and flow distribution in cerebral aneurysms and the development of a universal reduced pressure. J. Biomed. Sci. Eng. 7:7–14, 2014.

    Article  Google Scholar 

  51. Neofytou, P., and D. Drikakis. Non-Newtonian flow instability in a channel with a sudden expansion. J. Non-Newtonian Fluid Mech. 111:127–150, 2003.

    Article  MATH  Google Scholar 

  52. Nguyen, V. T., S. M. N. Wibowo, Y. A. Leow, H. H. Nguyen, Z. Liang, and H. L. Leo. A patient-specific computational fluid dynamic model for hemodynamic analysis of left ventricle diastolic dysfunctions. Cardiovasc. Eng. Technol. 6:412–429, 2015.

    Article  Google Scholar 

  53. O’Rourke, M. F., J. A. Staessen, D. Vlachopoulos, D. Duprez, and G. E. Plante. Clinical applications of arterial stiffness: definitions and reference values. Am. J. Hypertens. 15:426–444, 2002.

    Article  Google Scholar 

  54. Pannier, B. M., A. P. Avolio, A. Hoeks, G. Mancia, and K. Takazawa. Methods and devices for measuring arterial compliance in humans. Am. J. Hypertens. 15:743–753, 2002.

    Article  Google Scholar 

  55. Ramazani-Rend, R., S. Chelikani, E. M. Sparrow, and J. P. Abraham. Experimental and numerical investigation of orbital atherectomy: absence of cavitation. J. Biomed. Sci. Eng. 3:1108–1116, 2010.

    Article  Google Scholar 

  56. Raw MJ, (1996) Robustness of coupled algebraic multigrid for solving Navier Stokes equations. In: AIAA 34th Aerospace and Sciences Meeting and Exhibit, January 15–18, Reno, NV.

  57. Reymond, P., P. Crosetto, S. Deparis, A. Quarteroni, and N. Stergiopulos. Physiological simulation of blood flow in the aorta: comparison of hemodynamic indices as predicted by 3-D FSI, 3-D rigid wall and 1-D models. Med. Eng. Phys. 35:784–791, 2013.

    Article  Google Scholar 

  58. Rhie C. M., and W. L. Chow. A Numerical Study of the Turbulent Flow Past an Isolated Airfoil with Trailing Edge Separation. AIAA paper no. 82-0998, 1982.

  59. Sabbah, H. N., F. Khaja, J. F. Brymer, E. T. Hawkings, and P. D. Stein. Blood flow in the coronary arteries of man: relation to atherosclerosis. Monogr. Atheroscler. Basel, Karger 15:77–90, 1990.

    Google Scholar 

  60. Sparrow, E. M., J. P. Abraham, and W. J. Minkowycz. Flow separation in a diverging conical duct: effect of Reynolds number and divergence angle. Int. J. Heat Mass Transf. 52:3079–3083, 2009.

    Article  MATH  Google Scholar 

  61. Sparrow, E. M., J. C. K. Tong, and J. P. Abraham. Fluid flow in a system with separate laminar and turbulent zones. Num. Heat Transf. A 53:341–353, 2008.

    Article  Google Scholar 

  62. Staniloe, C. S., and R. Korabathina. Orbital atherectomy: device evolution and clinical data. J. Invasive Cardiol. 26:215–219, 2014.

    Google Scholar 

  63. Staniloe, C. S., L. Vales, S. Y. Han, J. Sloves, and A. Fallahi. Physiologic guidance of infrainguinal vascular interventions using the pressure wire. J. Invasive Cardiol. 27:483–488, 2015.

    Google Scholar 

  64. Stark, J. R., J. M. Gorman, E. M. Sparrow, J. P. Abraham, and R. E. Kohler. Controlling the rate of penetration of a therapeutic drug into the wall of an artery by means of a pressurized balloon. J. Biomech. Sci. Eng. 6:527–532, 2013.

    Article  Google Scholar 

  65. Stehbens, W. E., P. F. Davis, and B. J. Martin. Blood flow in large arteries: applications to atherogenesis and clinical medicine. Monogr. Atheroscler. Basel, Karger 15:1–15, 1990.

    Google Scholar 

  66. Sun, B., L. J. Vallez, B. D. Plourde, J. R. Stark, and J. P. Abraham. Influence of supporting tissue on the deformation and compliance of healthy and diseased arteries. J. Biomed. Sci. Eng. 8:490–499, 2015.

    Article  Google Scholar 

  67. Tang, D., C. Yang, Y. Huang, and D. N. Ku. A 3-D thin-wall model with fluid-structure interactions for blood flow in carotid arteries with symmetric and asymmetric stenosis. Comput. Struct. 72:357–377, 1999.

    Article  MATH  Google Scholar 

  68. Tang, D., C. Yang, Y. Huang, and D. N. Ku. Wall stress and strain analysis using a three-dimensional thick-wall model with fluid-structure interactions for blood flow in carotid arteries with stenosis. Comput. Struct. 72:341–356, 1999.

    Article  MATH  Google Scholar 

  69. Tang, D., C. Yang, H. Walker, S. Kobayashi, and D. N. Ku. Simulating cyclic artery compression using a 3D unsteady model with fluid-structure interactions. Comput. Struct. 80:1651–1665, 2002.

    Article  Google Scholar 

  70. Tang, D., C. Yang, S. Kobayashi, and D. N. Ku. Effect of a lipid pool on stress/strain distributions in stenotic arteries: 3-D fluid-structure interactions (FSI) models. J. Biomech. Eng. 126:363–370, 2004.

    Article  Google Scholar 

  71. Tang, D., C. Yang, S. Kobayashi, J. Zheng, and R. P. Vito. Effect of stenosis asymmetry on blood flow and artery compression: a three-dimensional fluid-structure interaction model. Ann. Biomed. Eng. 31:1182–1193, 2003.

    Article  Google Scholar 

  72. Torii, R., M. Oshima, T. Kobayashi, K. Takagi, and T. E. Tezduyar. Fluid-structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Comput. Mech. 38:482–490, 2006.

    Article  MATH  Google Scholar 

  73. Torii, R., M. Oshima, T. Kobayashi, K. Takagi, and T. E. Tezduyar. Influence of wall elasticity in patient specific hemodynamic simulations. Comput. Fluids 36:160–168, 2007.

    Article  MATH  Google Scholar 

  74. Valencia, A., and M. Villanueva. Unsteady flow and mass transfer in models of stenotic arteries considering fluid-structure interaction. Int. Commun. Heat Mass Transf. 33:966–975, 2006.

    Article  Google Scholar 

  75. Vallez, L. J., B. Sun, B. D. Plourde, and J. P. Abraham. Numerical analysis of arterial plaque thickness and its impact on artery wall compliance. J. Cardiovasc. Med. Cardiol. 2:26–34, 2015.

    Article  Google Scholar 

  76. Walburn, F., and D. Schneck. A constitutive equation for whole human blood. Biorheology 13:201–210, 1976.

    Google Scholar 

  77. Wang, S., and K. Vafai. Analysis of low density lipoprotein (LDL) transport within a curved artery. Ann. Biomed. Eng. 43:1571–1584, 2014.

    Article  Google Scholar 

  78. Welch, T. R., R. C. Eberhart, S. Banerjee, and C. J. Chuong. Mechanical interaction of an expanding coiled stent with a plaque-containing arterial wall: a finite-element analysis. Cardiovasc. Eng. Technol. 7:58–63, 2016.

    Article  Google Scholar 

  79. Zhai S., and X. Feng. A block-centered finite-difference method for the time-fractional diffusion equation on nonuniform grids. Num. Heat Transf. B, 2016 (in press).

  80. Zhao, S. Z., X. Y. Xu, A. D. Hughes, S. A. Thom, A. V. Stanton, et al. Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation. J. Biomech. 33:975–984, 2000.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of Cardiovascular Systems Inc.

Conflict of Interest

The authors declare no conflicts of interest.

Statement of Human Studies

Patient data were collected in accordance with Institutional Review Board approval.

Animal Studies

No animals were used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Abraham.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plourde, B.D., Vallez, L.J., Sun, B. et al. Alterations of Blood Flow Through Arteries Following Atherectomy and the Impact on Pressure Variation and Velocity. Cardiovasc Eng Tech 7, 280–289 (2016). https://doi.org/10.1007/s13239-016-0269-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-016-0269-7

Keywords

Navigation