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ABSTRACT

Eukaryotic cells contain numerous iron-requiring pro-
teins such as iron-sulfur (Fe-S) cluster proteins, hemo-
proteins and ribonucleotide reductases (RNRs). These
proteins utilize iron as a cofactor and perform key roles
in DNA replication, DNA repair, metabolic catalysis, iron
regulation and cell cycle progression. Disruption of iron
homeostasis always impairs the functions of these iron-
requiring proteins and is genetically associated with
diseases characterized by DNA repair defects in mam-
mals. Organisms have evolved multi-layered mecha-
nisms to regulate iron balance to ensure genome
stability and cell development. This review briefly pro-
vides current perspectives on iron homeostasis in yeast
and mammals, and mainly summarizes the most recent
understandings on iron-requiring protein functions
involved in DNA stability maintenance and cell cycle
control.
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INTRODUCTION

In most eukaryotic cells, iron is necessary to facilitate the
assembly of functional Fe-S cluster proteins, heme-binding
proteins, and ribonucleotide reductases (RNRs) (Dlouhy and
Outten, 2013; Heath et al., 2013). These iron-requiring pro-
teins are abundantly present in mitochondria, cytosol, and
nucleus; such proteins diversely function in electron transfer,
ribosome maturation, DNA replication and repair, and cell
cycle control (Kaplan et al., 2006; Ye and Rouault, 2010;
White and Dillingham, 2012).

Unbalanced iron levels always affect the physiology of
organisms. For instance, excess intracellular iron may result
in the generation of reactive oxygen species (ROS), which

can damage lipids, proteins, DNA; this adverse effect may
eventually lead to genome instability and cell death in almost
all organisms (Orrenius et al., 2011; Romero et al., 2014;
Turrens, 2003). On the other hand, iron deficiency is extre-
mely common in different species. Iron deficiency caused
anemia is one of the major public health problems, particu-
larly in children and pregnant women (Denic and Agarwal,
2007; Miller, 2013). In plants, the photosynthesis process is
highly dependent on iron. Iron deficiency often reduces the
amount of electron-transferring complexes, increases pro-
teins involved in carbon fixation, and causes chlorosis (Lo-
pez-Millan et al., 2013; Solti et al., 2008). In budding yeast
Saccharomyces cerevisiae, iron deficiency leads to the
dysfunction of iron-dependent enzymes, hemoproteins and
Fe-S proteins, thereby altering glucose metabolism and
biosynthesis of amino acid and lipid (Philpott et al., 2012;
Shakoury-Elizeh et al., 2010).

IRON HOMEOSTASIS IN YEAST AND MAMMALS

In eukaryotes, cellular iron homeostasis is achieved via
strictly controlled systems for iron uptake at the plasma
membrane and for eliciting balanced iron distributions
among cellular compartments. In addition, the mammals
should maintain systemic iron homeostasis by coordinately
regulating iron absorption, storage and recycling, except
keeping cellular iron balance.

Cellular iron homeostasis in yeast

Yeast cells acquire iron at the plasma membrane by utilizing
high- and low-affinity iron uptake systems (Fig. 1). Under iron
sufficient conditions, yeast cells mainly obtain iron through the
low-affinity plasma membrane transporter Fet4. This process
involves surface reductases (Fre1-Fre7), which can reduceFe3+

to Fe2+ (Herbik et al., 2002; Holmes-Hampton et al., 2013;Wu
et al., 2005; Yun et al., 2001). Under low iron conditions, yeast
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cells obtain iron via two independent high-affinity systems,
particularly Fet3/Ftr1 complex and Arn1-4 proteins (Philpott,
2006; Rutherford et al., 2001; Yun et al., 2000a, b). The Fet3/
Ftr1 proteins only deliver Fe2+ and their transcriptions are
controlled by the Fe-responsive transcription factor Aft1
(Dlouhy and Outten, 2013; Hamza and Baetz, 2012). The
Arn1-4 protein-dependent system becomes active in the
absence of Fet3 protein, and this system is responsible for
ferric siderophore uptake (Emerson et al., 2002; Heymann
et al., 2000; Lesuisse et al., 1998; Yun et al., 2000a, b). When
iron enters into the cytosol, it is present in a bioavailable form,
namely, “labile iron pool” (LIP) (Fig. 1) (Muhlenhoff et al.,
2010).

Intracellular free iron ismainly stored in the vacuole, where it
can be dynamically imported and exported by high- and low-
affinity transporters (Fig. 2). The high-affinity vacuolar iron
transport complex Fet5/Fth1 is a homologue of Fet3/Ftr1, and
specifically responds to low iron (Amillet et al., 1996; Kaplan
etal., 2006;LiandKaplan,1998;Liet al., 2008;Urbanowski and
Piper, 1999). By contrast, the low-affinity vacuolar iron trans-
porter Smf3 (DMT1 in mammals), which is a homologue of the
cell membrane transporter Smf1, mainly functions in iron rich
conditions (Portnoy et al., 2000; Portnoy et al., 2002). Inter-
estingly, the Fet5/Fth1 complex and Smf3 are transcriptionally

regulated by AFT1 and AFT2 (Li et al., 2008). Under Fe-defi-
cient conditions, AFT1 and AFT2 activate the expressions of
vacuolar iron exporter genes, particularly FET5/FTH1 and
SMF3; as a result, cytosol iron is increased and vacuolar iron is
decreased (Dlouhy and Outten, 2013). Moreover, iron storage
in yeast requires vacuolar iron transporter Ccc1 and its
expression is correlated with low iron. Activated AFT1 and
AFT2genescan induceCTH2,whichsubsequentlybinds to the
3′-untranslated region (UTR) of CCC1 and destabilizes its
corresponding mRNA; the expression of CCC1 is then
decreased (Li et al., 2001; Martinez-Pastor et al., 2013; Philpott
et al., 2012). In addition, Yap5 has been indicated to function as
an iron-responsive transcriptional activator that regulates vac-
uolar iron storage (Li et al., 2008).

Aft1 localizes in the cytosol under iron rich conditions,
whereas it accumulates in the nucleus when iron is low (Yam-
aguchi-Iwai et al., 2002; Ueta et al., 2012; Fig. 2). This nucleus-
to-cytoplasmshuttling process is highly dependent on cytosolic
monothiol glutaredoxins (Grx3 and Grx4), and the BolA-like
protein Fra2 (Li et al., 2009). Grx3 (PICOT in mammals) and
Grx4 are required to provide bioavailable iron for the assembly
of many iron-containing holoproteins such as hemoproteins,
Fe-S proteins, and RNR (Haunhorst et al., 2013; Mühlenhoff
et al., 2010; Zhang et al., 2014a, b). Importantly, Grx3/4 can
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Figure 1. Iron uptake and utilization inside the cell. Yeast cells obtain iron through low-affinity (Fe-repleted condition, Fet4p) and

high-affinity systems (low Fe condition, Fet3p/Ftr1p and Arn1-4 proteins). Both Fet4p and Fet3p/Ftr1p can only transport Fe2+, and

these processes require the prior reduction of Fe3+ to Fe2+ by surface reductases (Fre1 to Fre7) (Herbik et al., 2002; Holmes-

Hampton et al., 2013; Wu et al., 2005; Yun et al., 2001). The cytosolic “labile iron pool” is utilized by Fe-S proteins, hemoproteins,

ribonucleotide reductases (RNRs), and other iron-requiring proteins that localize in different cellular compartments.
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specifically interact with the CDCmotifs in Aft1/2, and also can
bind to Fra2 to form [2Fe-2S]-bridged heterodimers (Li et al.,
2009; Ueta et al., 2007). The Fra2-Grx3/4 complex is possibly
implicated in Aft1/2 sensing of the cellular iron status (Dlouhy
and Outten, 2013). Under iron rich conditions, the Fra2-Grx3/4
complexbinds toaFe-Scluster, causingAft1/2oligomerization.
Aft1 consequently shuttles to the cytosol through Msn5 and
deactivates iron regulon. Under low iron conditions, the Fra2-
Grx3/4 complex cannot inhibit Aft1/2 activities. Moreover, Aft1
moves to the nucleus and activates the iron regulon to increase
cellular iron levels (Fig. 2) (Li et al., 2012; Lill et al., 2012; Poora
et al., 2014).

Systemic and cellular iron homeostasis in mammals

Iron homeostasis in mammals includes systemic and cellular
regulations, which have been recently summarized in detail
(Andrews and Schmidt, 2007; Pantopoulos et al., 2012). Sys-
temic iron regulatory processes occur in the following several
steps: (1) iron absorption starts at duodenal enterocytes and
functions in macrophage iron recycling and hepatocyte iron
mobilization (Beaumont, 2010; Zhang, 2010); (2) intestinal cells

then absorb iron via divalent metal transporter 1 (DMT1), which
requiresprior reductionofFe3+ toFe2+byduodenal cytochrome
b (DcytB) (Sharp and Srai, 2007; Pantopoulos et al., 2012); (3)
spleenic reticuloendothelialmacrophagescontrol iron recycling
from senescent red blood cells (Soe-Lin et al., 2009; Panto-
poulos et al., 2012); (4) plasma transferrin (Tf) absorbs and
circulates iron in the body (Pantopoulos et al., 2012); and (5)
hepatic hormone hepcidin controls iron efflux by regulating the
stability of ferroportin (Pantopoulos et al., 2012).

For cellular iron homeostasis, most mammalian cells
acquire iron via Tf to form holo-Tf (Anderson and Vulpe,
2009; Dunn et al., 2007), which further binds to transferrin
receptor-1 (TfR1) on the iron-consuming cell membrane. The
holo-Tf-TfR1 complex is then internalized by receptor-med-
iated endocytosis (Lill et al., 2012) and acidified in the
endosome. As a result, the release of Fe3+ from holo-Tf is
facilitated (Zhao et al., 2010). The Fe3+ should be reduced to
Fe2+ by a six-transmembrane epithelial antigen of the pros-
tate 3 (Steap3) before this form of iron can be transported
into the cytoplasm by DMT1 or transient receptor potential
protein (TRPML1) (Zhang et al., 2012). Apo-Tf is then
released from TfR1 and recycled back to the cell membrane
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Figure 2. Iron uptake, intracellular trafficking and regulation in S. cerevisiae. Iron uptake is performed at the plasma membrane

by iron transporters. When iron enters into cytosol, it exists in Fe-S clusters in “labile iron pool” (Muhlenhoff et al., 2010), which is

subsequently donated to cytosolic iron-dependent apoproteins through monothiol Grx3p/4p to form holoproteins. Meanwhile, the

mitochondrial iron transporters Mrs3p/4p and the vacuolar iron transporter Smf3p, Ccc1p and Fet5p/Fth1p can also accept iron from

Grx3p/4p. Grx3p/4p can interact with Fra2p and Aft1p/Aft2p, and the Grx3p/4p- bound Fe-S clusters may function as sensors for the

cytosolic iron pool (Lill and Mühlenhoff, 2008; Muhlenhoff et al., 2010). In low-Fe condition, Aft1p can shuttle between the cytosol and

the nucleus in an iron-responsive manner, and functions as a transcriptional activator of iron regulon genes, which subsequently

activate high-affinity iron uptake systems (Berthelet et al., 2010; Lill et al., 2012).

REVIEW Caiguo Zhang

752 © The Author(s) 2014. This article is published with open access at Springerlink.com and journal.hep.com.cn

P
ro
te
in

&
C
e
ll



to repeat another cycle (Pantopoulos et al., 2012). There-
after, the newly acquired iron enters into the redox-active
“labile iron pool” in the cytosol (Gkouvatsos et al., 2012;
Pantopoulos et al., 2012). In addition, cellular iron balance is
post-transcriptionally regulated by two iron regulatory pro-
teins, namely, IRP1 and IRP2. Under Fe-deficient conditions,
IRP1 and IRP2 specifically bind to iron-responsive elements
in 3′- or 5′-UTR of the mRNA transcripts of TfR1, ferritin H
chain (Fth1), ferritin L chain, or DMT1; as a result, these
regulatory proteins are protected from degradation or their
translation is inhibited (Anderson and Vulpe, 2009; Dunn
et al., 2007; Kaplan and Kaplan, 2009; Muckenthaler et al.,
2008).

IRON-REQUIRING PROTEINS AND DNA
REPLICATION/REPAIR

Numerous proteins involved in DNA replication and repair
require iron as a cofactor. These proteins include the three
DNA polymerases (Pol α, Pol δ and Pol ε), the DNA heli-
cases (Rad3/XPD, Dna2, RTEL1, FANCJ and ChlR1), and
DNA primase regulator subunit Pri2 (PRIM2 in mammals).
Moreover, the eukaryotic RNR small subunit requires iron to
form a diferric-tyrosyl radical cofactor (Fe2-

IIIY∙) to initiate
nucleotide reduction.

DNA polymerases/primases and DNA replication

Although the eukaryotes contain diverse genomic sizes, the
bulk of DNA synthesis is performed via three conserved
polymerases: Pol α, Pol δ and Pol ε (Miyabe et al., 2011). Pol α
tightly associates with DNA primases to initiate the synthesis of
short RNA primers that are further utilized by Pol δ and Pol ε to
synthesize the lagging and leading strands, respectively
(Schumacher et al., 2000; Wang et al., 2004). Generally,
eukaryotic DNA primases are heterodimeric enzymes with a
small (PriS) and a large (PriL) subunit, in which the PriL subunit
contains a conserved Fe-S domain necessary to initiate DNA
replication (Kilkenny et al., 2013; Prakash and Prakash, 2002;
Sauguet et al., 2010). Eukaryotes also possess Pol ζ, a
B-family polymerase with lower fidelity than other polymerases;
Pol ζ specifically functions in the extension step of translesion
DNA synthesis (Acharya et al., 2006). All of these DNA poly-
merases and primases require a Fe-S cluster for the formation
of active holoproteins, implying the importance of iron in
maintaining genome integrity (Netz et al., 2012). Interestingly,
the functions of these nuclear DNA polymerases depend on
the cytosolic and the mitochondrial Fe-S protein biogenesis
machineries, presumably because they act as sulfur donors for
the Fe-S cluster in DNA polymerases (Rouault, 2012).

DNA helicases, DNA replication and repair

DNA helicase and helicase-nuclease enzymes, including
XPD, Rad3, FancJ, ChlR1, RTEL1 and Dna2, preserve
genome stability and are genetically associated with

diseases characterized by DNA repair defects (Rudolf et al.,
2006; Wu et al., 2009; Wu et al., 2012). Each of these pro-
teins contains a conserved Fe-S cluster near the N-terminus,
which is essential for helicase activities (Wu et al., 2012).
XPD is classified as a SF2- DNA helicase and plays an
important role in nucleotide excision repair (NER). FANCJ
can catalytically unwind duplex DNA and G-quadruplex
structures in an ATP hydrolysis-dependent manner (Wu
et al., 2012). Clinically, patients with trichothiodystrophy
(TTD) and Fanconi anemia completely lose helicase activi-
ties because of the relevant mutations in the Fe-S clusters of
XPD and FancJ proteins, respectively (Coin et al., 2007;
Fregoso et al., 2007). Moreover, site-directed mutagenesis
of four conserved cysteines in Fe-S cluster of yeast XPD
(Rad3) leads to defects in excision repair of UV photoprod-
ucts (Wu et al., 2009). The Fe-S cluster in the Rad3 helicase
is necessary to induce the coupling of ATP hydrolysis with
DNA translocation and to target helicase in the ss DNA-ds
DNA junction (Pugh et al., 2008). ChlR1 is a DEAH/DEAD
box-containing DNA helicase belonging to the FANCJ-like
DNA helicase family. The mammalian and yeast ChlR1
proteins facilitate the establishment of sister chromatid
cohesion and the maintenance of genomic stability. In Cae-
norhabditis elegans, CHL-1 is essential for normal develop-
ment, fertility and chromosomal stability (Laha et al., 2011;
Parish et al., 2006); RTEL specifically interacts with the
shelterin complex and involves in telomere maintenance in
mammals (Wu et al., 2012). These DNA helicases generally
function together with other transcription factor II H (TFIIH)
complex members such as XPG, XPB, p62, p52, p44, p34,
p8/TTDA, Cdk7, cyclin H and MAT1 in human, and Rad3,
Rad25, TFB1, SSL1, p55 and p38 in yeast (Sung et al.,
1996).

The SF1 Dna2 helicase-nuclease, a protein implicated in
double-strand break (DSB) end resection and Okazaki
fragment processing, also contains a Fe-S cluster (Wu et al.,
2012). Mutations in the Fe-S domain of Dna2 affect the
ability of protein complexes to bind broken DNA, thereby
impairing DNA replication; this result indicates the essential
function of Fe-S in this process (Wu et al., 2012). Moreover,
several other DNA helicases, such as DinG (E. coli), AddAB
(E. coli), and DOG-1 (C. elegans), are implicated in DNA
replication and repair (Wu et al., 2012).

Other iron-sulfur cluster proteins and DNA replication

The maturation of mitochondrial Fe-S proteins is carried out
via the iron-sulfur cluster (ISC) assembly machinery,
whereas cytoplasmic and nuclear Fe-S protein biogenesises
depend on both the ISC and CIA (cytosolic iron-sulfur cluster
assembly) machineries (Lill et al., 2012; Sipos et al., 2002).
The components and biogenesis mechanisms of CIA path-
way exhibit high degree of conservation in mammals and
yeast. Yeast cells assemble a transiently bond [4Fe-4S]
cluster on the Nbp35-Cfd1 scaffold (NUBP1-NUBP2 in
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mammals). This synthesis reaction further requires the
electron transfer chain from Dre2 (CIAPIN1 in mammals)
and its binding partner, the diflavin NADPH oxidoreductase
Tah18 (NDOR1 in mammals). Thereafter, the transiently
bound [4Fe-4S] cluster of Cfd1-Nbp35 is transferred to
apoproteins, including apo-Cia1 (CIAO1 in mammals), apo-
Nar1 (NARFL in mammals), apo-Cia2 and apo-MMS19, to
form their corresponding holoproteins (Couturier et al., 2013;
Zhang et al., 2008). The yeast MMS19 is necessary to
transfer Fe-S clusters to target proteins and is also identified
to affect DNA repair, chromosome segregation and hetero-
chromatin silencing (Stehling et al., 2012). More importantly,
both the human and yeast MMS19 proteins interact with
numerous Fe-S proteins, including Pol δ, DNA primase,
Dna2, XPD, RTEL1 and FANCJ (Gari et al., 2012). The
stabilities of these Fe-S proteins are severely affected in the
absence of MMS19 (Gari et al., 2012). Consistent with its
essential role in DNA replication and repair, MMS19 defi-
ciency in yeast or human cells exhibits increased sensitivity
to hydroxyurea and S phase defect during cell cycle. More-
over, MMS19 can form a complex with two other CIA
machinery proteins, namely, Cia1 and Cia2, suggesting that
these CIA proteins are possibly involved in DNA replication
and repair (Stehling et al., 2013).

The iron regulatory protein IRP1 possesses a [4Fe-4S]
cluster. The inhibition of the IRP1 aconitase activity in
L5178Y mouse lymphoma cells can increase “labile iron
pool” levels. The increased iron burden in LIP leads to
exacerbated hydrogen peroxide-induced genotoxicity in
L5178Y cells (Lipinski et al., 2005). The stable IRP1
knockdown by shRNA interference in HL60 radiosensitive
cells causes radioresistance to linear energy transfer
gamma rays, but a more rapid DNA DSB repair. The
mechanism of radioresistance is possibly related to the
attenuated free radical-induced cell death (Haro et al., 2012).

RNR, iron, DNA replication and DNA repair

RNRs are enzymes that use radical chemistry to reduce ri-
bonucleotides to synthesize deoxyribonucleotides (dNTPs),
thereby generating the necessary precursors of DNA repli-
cation and repair (Zhang et al., 2014a, b). Imbalanced dNTP
pools usually lead to increased DNA mutations, DNA breaks
and cell death by enhancing misincorporation and by inhib-
iting the proofreading function of DNA polymerases (Kumar
et al., 2010; Zhang et al., 2014a, b). Eukaryotic RNRs
comprise the large subunits (α or R1) and small subunits (β
or R2). Similar to Fe-S proteins, the RNR small subunits also
require iron to sustain a diferric tyrosyl radical (Fe2-

IIIY∙)
cofactor. Cells depleted of Grx3/4 exhibit deficiencies in RNR
nucleotide reduction activity, but the mechanism remains to
be elucidated (Zhang et al., 2008; Li et al., 2009; Netz et al.,
2010, Ueta et al., 2012). Interestingly, the recent studies
have shown that the depletion of Dre2 affects both RNR
gene transcriptions and mRNA turnover by activating Aft1/

Aft2-controlled iron regulon (Zhang et al., 2014a, b). The
RNR subunit protein levels are tightly regulated by the DNA
damage checkpoint. For instance, the mammalian small
subunit RRM2 is degraded via an ubiquitin-mediated
mechanism when cells complete DNA replication and/or
repair. This process is mediated through two E3 ubiquitin
ligase complexes, namely, the Skp1/Cullin/F-box (SCF) and
the anaphase-promoting complex (APC) (Chabes et al.,
2003b; D’Angiolella et al., 2012). In response to DNA dam-
age, mammalian cells increase the transcription of p53R2
(RRM2B), which further forms an active RNR holoenzyme
with RRM1 to facilitate DNA repair by activating the ATM/
ATR-CHK checkpoint pathway (Harper and Elledge, 2007;
Nakano et al., 2000). Similarly, the expressions of yeast
RNR genes are induced via the activation of the Mec1-
Rad53-Dun1 damage checkpoint kinase cascade, particu-
larly RNR3 (Zhang et al., 2014a, b).

Hemoproteins and DNA stability

Heme commonly serves as the prosthetic group for hemo-
proteins, such as hemoglobin, myoglobin, cytochromes and
nitric oxide synthase. These hemoproteins are involved in
oxygen transport, oxidative catalysis and electron transport
(Rae and Goff, 1998; Brown et al., 2004; Pamplona et al.,
2007; Girvan and Munro, 2013). In addition, heme is
important for systemic iron homeostasis in mammals, as it is
present in many normal dietary sources (Pamplona et al.,
2007). A number of heme transporters (FLVCR, ABCG2/
BCRP, ABCB6, ABCB7 and ABCB10, PCFT/HCP1, HRG-1
and HRG-4) and heme-binding transcription factors (Bach1,
NPAS2 and Rev-erb) are reportedly involved in heme
metabolism and regulation (Severance and Hamza, 2009;
Yang et al., 2008). Many hemes are enzymatically degraded
by their degradation systems, such as heme oxygenases
(HO, including HO-1, 2, and 3) and microsomal cytochrome
P450 reductase. A considerable amount of hydrogen per-
oxide (H2O2) is produced during heme degradation, which
may cause cellular toxicity and DNA damage (Quincozes-
Santos et al., 2013; Wagener et al., 2003).

The disruption of hemoproteins, such as cytochromes b5
and nitric oxide synthase, possibly increases ROS produc-
tion. Cytochromes b5 is a membrane bound hemoprotein
and generally serves as an electron carrier in several oxi-
dative reactions of reductases, such as NADH-cytochrome
b5 reductase (Reid et al., 2013; Schenkman and Jansson,
2003; (Vergeres and Waskell, 1995), NADPH-cytochrome
P450 reductase (Gan et al., 2009; Pyrih et al., 2014), and
fatty acid desaturases involved in lipid and cholesterol bio-
synthesis (Reddy et al., 1977; Keyes and Cinti, 1980; Larade
et al., 2008). The yeast Irc21, which shares similar heme-
binding sites with Cyb5, reportedly functions in chromatin
remodeling and the increase of DNA damage foci (Alvaro
et al., 2007). This result indicates that Irc21 may be involved
in DNA replication process, and the assumption is supported
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by the genetic interactions of Irc21 with several DNA dam-
age- and repair-related proteins, such as Pri2, Pol12, Dia2,
Rad17, MMS22 and CDC13 in Saccharomyces genome
database (SGD). Moreover, cytochrome c is also a small
hemoprotein involved in apoptosis and cell death (Jiang
et al., 2004).

ANEMIA AND DNA STABILITY

Anemia occurs as a result of numerous underlying causes
and can be classified into different types based on the
morphologies of red blood cells, discernible clinical spectra
and etiologic mechanisms (Shah and Agarwal, 2013). As the
most common form of anemia, iron deficiency anemia
increases nuclear DNA damage in adults, as demonstrated
by an increased DNA damage in anemic subjects (Aslan
et al., 2006). Conversely, the results of iron nutritional defi-
ciency in rats do not affect DNA stability or lipid peroxidation
(Diaz-Castro et al., 2008). Studies have also indicated that
dietary iron-deficient anemia induces various metabolic
changes and even apoptosis in rat liver (Kamei et al., 2010).
Moreover, fanconi anemia, a genetic disorder, is caused by
defects in a cluster of proteins responsible for DNA repair.
Studies have shown that eight of these proteins (FANCA, -B,
-C, -E, -F, -G, -L and -M) assemble to form a core protein
complex in the nucleus. Their assemblies are activated by
replicative stresses, particularly DNA cross-linking agents
(mitomycin C or cisplatin) and ROS (Deans and West, 2009).
The deficiency of several ribosomal proteins (RP) can cause
diamond blackfan anemia (DBA), which is a genetic syn-
drome characterized by red blood cell aplasia. RP-deficient
zebrafish and human hematopoietic activate the ATR/ATM/
CHK1/2/p53 pathway (Danilova et al., 2014).

IRON-REQUIRING PROTEINS AND CELL CYCLE
CONTROL

Iron is a major regulator of cell cycle by inhibiting the for-
mation or activities of the cyclin and cyclin-dependent kinase
complexes. Intracellular iron disruption by chelators causes
cell cycle arrest, particularly in G1 and S phases (Fu et al.,
2007; Siriwardana and Seligman, 2013).

Cyclin, iron and cell cycle

The yeast cell cycle is mainly regulated by CDK (Cdc28),
together with two other cyclin families: Cln1–3 and Clb1–6
(Nasmyth, 1993; Mendenhall and Hodge, 1998). Cdc28
associates with different cyclin proteins to govern cell cycle
issues. For instance, Cln1/Cdc28 and Cln2/Cdc28 function
in budding generation and spindle pole body duplication;
Cln3/Cdc28 controls the size of newly formed cells (Chen
et al., 2000). Clb1/Cdc28 and Clb2/Cdc28 are involved in
mitosis; Clb3/Cdc28 and Clb4/Cdc28 are implicated in DNA

replication and spindle formation, Clb5/Cdc28 and Clb6/
Cdc28 are required for DNA replication (Mendenhall and
Hodge, 1998; Ofir and Kornitzer, 2010; Vohradsky, 2012).

Constant AFT1 expression results in an increased iron
uptake, thereby leading to cell cycle arrest at the start of G1

regulatory point (Philpott et al., 1998). The expression of the
G1-specific cyclins (Cln1 and Cln2) is decreased when yeast
cells are exposed to iron rich conditions, which may account
for the arrest (Philpott et al., 1998; Yu et al., 2007).

In human, cyclins and CDK also control cell cycle pro-
gression. Intracellular iron depletion by some chelators
causes allosteric inhibition of cyclin-A, cyclin-E, Cdc2 and
Cdk2, resulting in cell cycle arrest in G1 and S phases
(Renton and Jeitner, 1996; Yu et al., 2000). In some cases,
intracellular iron depletion reduces cyclin-D and Cdk4 pro-
tein levels and alters retinoblastoma protein phosphorylation
(Yu et al., 2000). This G1/S arrest further indicates the
essential roles of iron in cell cycle progression, growth and
division. Under some iron deficient conditions, a G2/M arrest
has also been detected (Renton and Jeitner, 1996). Fur-
thermore, several iron chelators evidently exhibit strong
anticancer activities by inducing cell cycle arrest and apop-
tosis (Rao, 2013). However, involved mechanisms are barely
known; as such, the relationships between iron chelators
and structural activities should be understood.

Iron-sulfur cluster proteins and cell cycle

In yeast, the expressions of iron transporter genes FET3/
FTR1 are tightly regulated by cell cycle and reach the peaks
during M and M/G1 phases (Spellman et al., 1998). Two
tah18 temperature-sensitive (ts) mutants, namely, tah18-5I5
and tah18-5H8, exhibit a prolonged S phase and a delay at
the G1/S boundary, respectively (Zhang et al., 2014a, b).
MMS19 gene silencing in human cells leads to genotoxic
stress sensitivity (Stehling et al., 2012) and G1 phase arrest
in cell cycle under limited nucleotide pool conditions, sug-
gesting that DNA replication is impaired in these cells (Gari
et al., 2012).

In human, the upregulation of CIAPIN1 results in signifi-
cant inhibition of the CCRCC-derived cell growth in vitro and
in vivo with G1 cell cycle arrest (He et al., 2009). CIAPIN1-
induced growth suppression reduces protein levels of cyclin
D1, cyclin E, Cdk2, Cdk4, p-Rb and VEGF (He et al., 2009).
Moreover, Grx3 is critical for cell cycle progression during
embryogenesis in mouse. Cells depleted of Grx3 undergoes
normal DNA replication during the S phase but exhibit
impaired growth and cell cycle progression at the G2/M
phase (Cheng et al., 2011).

Iron-requiring proteins and cell cycle

In budding yeast, information on the hemoproteins involved
in cell cycle is limited. However, heme and hemoproteins
have been implicated in controlling the expressions of cell
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cycle regulators and cell growth in mammals. Heme syn-
thesis inhibition causes cell cycle arrest in S phase, upreg-
ulates p53 and CDK inhibitor p21 protein levels, and
downregulates Cdk4, Cdc2 and cyclin D2 protein levels (Ye
and Zhang, 2004). The overexpression of heme oxygenase-1
(HO-1) in human pulmonary epithelial cells results in cell
growth arrest during G0/G1 phase and increased resistance to
hyperoxia (Lee et al., 1996).

RNR and cell cycle

RNR expression and activity are strictly regulated during cell
cycle to generate and maintain proper dNTP pools that
ensure the fidelity of DNA synthesis and repair (Tanaka
et al., 2000; Sanvisens et al., 2011). Generally, the dNTP
pools increase by 5- to 10-fold when cells transit from G0/G1

phase to S phase; this transition is mainly achieved by
increased RNR levels during the exponential phase in bac-
teria and the S phase in eukaryotes (Cendra Mdel et al.,
2013; Zhang et al., 2014a, b). In mammalian cells, the
transcriptions of RRM1 and RRM2 are dependent on cell
cycle with low or undetectable transcription levels in G0/G1

phase but maximal levels during S phase (Bjorklund et al.,
1990; Chabes et al., 2004). In plants, the expressions of R1
and R2 are also S phase specific and dependent on the
E2F-like motifs in their promoters (Chaboute et al., 2002). In
budding yeast, the transcriptions of RNR genes (RNR1,
RNR2 and RNR4) peak at the beginning of the S phase by
regulating the transcription factor pairs Mbp1/Swi6 and Swi4/
Swi6, which can bind to the Mlul cell cycle box (Sanvisens
et al., 2013). However, no cell cycle regulation has been
observed in RNR3 transcription (Lee and Elledge, 2006;
Sanvisens et al., 2013).

SUMMARY

Although results have indicated that iron-requiring proteins
are implicated in DNA replication, repair and cell cycle
control, limited information is available regarding their
functional mechanisms. Several iron-requiring proteins,
such as DNA polymerases/primases, DNA helicases, and
RNRs, directly participate in DNA replication and repair.
Biochemical and structural studies have suggested that
Fe-S domains in these enzymes serve a structural rather
than a redox-active function by possibly stabilizing local
domain conformation that may mediate protein-protein or
protein-nucleic acid interactions. Disruption of some iron-
requiring proteins, particularly hemoproteins, associates
with the generation of ROS, which results in DNA damage.
Mutations of iron-requiring proteins are associated with
diseases characterized by DNA repair defects and/or a
poor response to replication stress in mammals. Thus, a
detailed understanding of the mechanisms of Fe-requiring
protein functions may provide insights into the related
mutagenic diseases.
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