Skip to main content
Log in

De novo assembly and comparative transcriptome analysis of contrasting pearl millet (Pennisetum glaucum L.) genotypes under terminal drought stress using illumina sequencing

  • Original Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

Pearl millet (Pennisetum glaucum L.) is one of the most important small-grained annual cereal crops grown in the arid and semi-arid regions of India and Africa, where terminal drought is a major constraint for its productivity. Terminal drought stress is more damaging to pearl millet than drought at vegetative stage as 50% or more reduction in yield may incur. However, a pearl millet genotype, PRLT2/89-33, parent of a mapping population is tolerant to terminal drought stress. With the aim to understand the molecular mechanism underlying terminal drought tolerance in this naturally drought tolerant crop, we examined the leaf transcriptome of contrasting pearl millet genotypes namely, PRLT2/89-33 and H77/833-2 differing for terminal drought tolerance using illumina Miseq sequencing platform. In this study, 40,880 genes were found to be differentially expressed and 8273 unigenes showed significant similarities to known sequences in NCBI non-redundant (nr) database and were classified into 189 Gene Ontology and 24 Clusters of Orthologous Group terms for both the genotypes. Expression profiling of 13 randomly selected transcripts was done to validate the RNA-Seq data. The study revealed that the genes for phytohormones biosynthesis, secondary metabolites and abiotic stress related transcription factors were more expressed in PRLT2/89-33, throwing insights into the molecular basis of its terminal drought tolerance. The study also supported that Illumina Miseq Platform is a powerful tool for transcriptome analysis and molecular-marker development in economically important non-model crop species, particularly those with large and complex genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availabilty

Raw Illumina sequences were submitted to NCBI (BioProject ID: PRJNA607164). The raw reads can be accessed with accession number SAMN14122710 for PRLT2/89-33 samples and SAMN14122711 for H77/833-2 samples.

References

  1. Agarwal P, Agarwal PK, Joshi AJ, Sopory SK, Reddy MK. Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. Mol Biol Rep. 2010;37(2):1125.

    CAS  PubMed  Google Scholar 

  2. Aneja B, Yadav NR, Kumar N, Yadav RC. Hsp transcript induction is correlated with physiological changes under drought stress in Indian mustard. Physiol Mol Biol Plants Int J Funct Plant Biol. 2015;21(3):305–16.

    CAS  Google Scholar 

  3. Aparna K, Nepolean T, Srivastava RK, Kholova J, Rajaram V, Kumar S, Rekha B, Senthilvel S, Hash CT, VadeZ V. Quantitative trait loci associated with constitutive traits controlling water use in pearl millet [Pennisetum glaucum (L.) R.Br.]. Plant Biol. 2015;5:1073–84.

    Google Scholar 

  4. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bartels D, Sunkar R. Drought and salt tolerance in plants. Crit Rev Plant Sci. 2005;24:23–58.

    CAS  Google Scholar 

  6. Bates BC, Kundzewicz ZW, Wu S, Palutikof JP. Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change (IPCC). Geneva, Switzerland, IPCC Secretariat; 2008

  7. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc. 1995;57:289–300.

    Google Scholar 

  8. Bidinger FR, Hash CT. “Pearl millet,” in Physiology and Biotechnology Integration for Plant Breeding, eds Nguyen H T, Blum A, editors. (New York, NY: Marcel Dekker), 2004; 225–270.

  9. Bidinger FR, Mahalakshmi V, Rao GDP. Assessment of drought resistance in pearl millet [Pennisetum americanum (L.) Leeke]. Estimation of genotype response to stress. Aust J Agric Res. 1987;38:49–59.

    Google Scholar 

  10. Chakrabarty D, Chauhan PS, Chauhan AK, Indoliya Y, Lavania UM, Nautiyal CS. De novo assembly and characterization of root transcriptome in two distinct morphotypes of vetiver, Chrysopogon zizaniodes (L.) roberty. Sci Rep. 2015;5:18630.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Choudhary M, Jayanand Padaria JC. Transcriptional profiling in pearl millet (Pennisetum glaucum L.R. Br.) for identification of differentially expressed drought responsive genes. Physiol Mol Biol Plants. 2015;21(2):187–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Dodd IC. Hormonal interactions and stomatal responses. J Plant Growth Regul. 2003;22(1):32–46.

    CAS  Google Scholar 

  13. Dudhate A, Shinde H, Tsugama D, Liu S, Takano T. Transcriptomic analysis reveals the differentially expressed genes and pathways involved in drought tolerance in pearl millet [Pennisetum glaucum (l.) r. Br]. PLoS ONE. 2018. https://doi.org/10.1371/journal.pone.0195908.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Guo NY, Zhao NQ, Guo Y. Identification of candidate genes involved in wax deposition in Poa pratensis by RNA-seq. BMC Genom. 2016;17:314.

    Google Scholar 

  15. Hirayama T, Shinozaki K. Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J. 2010;61:1041–52.

    CAS  PubMed  Google Scholar 

  16. Houben M, Van de Poel B. 1-Aminocyclopropane-1-carboxylic acid oxidase (ACO): the enzyme that makes the plant hormone ethylene. Front Plant Sci. 2019;10:695.

    PubMed  PubMed Central  Google Scholar 

  17. Islam T, Manna M, Reddy MK. Glutathione peroxidase of Pennisetum glaucum (PgGPx) is a functional Cd2 + dependent peroxiredoxin that enhances tolerance against salinity and drought stress. PLoS ONE. 2015;10(11):1–18.

    Google Scholar 

  18. Jaiswal S, Antala TJ, Mandavia MK, Chopra M, Jasrotia RS, Tomar RS, Kheni J, Angadi UB, Iquebal MA, Golakia BA, Rai A, Kumar D. Transcriptomic signature of drought response in pearl millet [Pennisetum glaucum (L.)] and development of web-genomic resources. Sci Rep. 2018;8:3382.

    PubMed  PubMed Central  Google Scholar 

  19. Kholova J, Hash CT, Kakkera A, Kocova M, Vadez V. Constitutive water-conserving mechanisms are correlated with the terminal drought tolerance of pearl millet [Pennisetum glaucum (L.) R. Br.]. J Exp Biol. 2010;61:369–77.

    CAS  Google Scholar 

  20. Kholova J, Vadez V. Water extraction under terminal drought explains the genotypic differences in yield, not the anti-oxidant changes in leaves of pearl millet (Pennisetum glaucum). Funct Plant Biol. 2013;40:44–53.

    Google Scholar 

  21. Kholova J, Hash CT, Koˇcová M, Vadez V. Does a terminal drought tolerance QTL contribute to differences in ROS scavenging enzymes and photosynthetic pigments in pearl millet exposed to drought? Environ Exp Bot. 2011;71:91–106.

    Google Scholar 

  22. Kumar M, Yusuf MA, Yadav P, Narayan S, Kumar M. Overexpression of chickpea defensin gene confers tolerance to water-deficit stress in Arabidopsis thaliana. Front Plant Sci. 2019;10:290.

    PubMed  PubMed Central  Google Scholar 

  23. Lata C. Advances in omics for enhancing abiotic stress tolerance in millets. Proc Indian Natl Sci Acad. 2015;81:397–417.

    Google Scholar 

  24. Lata C, Prasad M. Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot. 2011;62:3387–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lata C, Jha S, Dixit V, Sreenivasulu N, Prasad M. Differential antioxidative responses to dehydration-induced oxidative stress in core set of foxtail millet cultivars [Setaria italica (L.)]. Protoplasma. 2011;248:817–28.

    CAS  PubMed  Google Scholar 

  26. Lata C, Muthamilarasan M, Prasad M. Drought stress responses and signal transduction in plants. In: Pandey GK, editor. The elucidation of abiotic stress signaling in plants. New York, NY: Springer; 2015. p. 195–225.

    Google Scholar 

  27. Lee DY, Lee J, Moon S, Park SY, An G. The rice heterochronic gene SUPERNUMERARY BRACT regulates the transition from spikelet meristem to floral meristem. Plant J. 2007;49:64–78.

    CAS  PubMed  Google Scholar 

  28. Lu CM, Zhang JH. Effects of water stress on photosystem II photochemistry and its thermo stability in wheat plants. J Exp Bot. 1999;50(336):1199–206.

    CAS  Google Scholar 

  29. Ma Y, Dai X, Xu Y, Luo W, Zheng X, Zeng D, Pan Y, Lin X, Liu H, Zhang D, et al. COLD1 confers chilling tolerance in rice. Cell. 2015;160:1209–21.

    CAS  PubMed  Google Scholar 

  30. Mahalakshmi V, Bidinger FR. Water deficit during panicle development in pearl millet: yield compensation by tillers. J Agric Sci Camb. 1986;106:113–9.

    Google Scholar 

  31. Min H, Chen C, Wei S, Shang X, Sun M, Xia R, et al. Identification of drought tolerant mechanisms in maize seedlings based on transcriptome analysis of recombination inbred lines. Front Plant Sci. 2016;7:1080.

    PubMed  PubMed Central  Google Scholar 

  32. Mishra R, Reddy P, Nair S, Markandeya G, Reddy A, Sopory S, Reddy M. Isolation and characterization of expressed sequence tags (ESTs) from subtracted cDNA libraries of Pennisetum glaucum seedlings. Plant Mol Biol. 2007;64:713–32.

    CAS  PubMed  Google Scholar 

  33. Muthusamy M, Uma S, Backiyarani S, Saraswathi MS, Chandrasekar A. Transcriptomic changes of drought-tolerant and sensitive banana cultivars exposed to drought stress. Front Plant Sci. 2016;7:1609.

    PubMed  PubMed Central  Google Scholar 

  34. Pinheiro C, Chaves MM. Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot. 2011;62:869–82.

    CAS  PubMed  Google Scholar 

  35. Rajaram V, Nepolean T, Senthilvel S, Varshney RK, Vadez V, Srivastava RK, Shah TM, Supriya A, Kumar S, Kumari BR, et al. Pearl millet [Pennisetum glaucum(L.) R. Br.] consensus linkage map constructed using four RIL mapping populations and newly developed EST-SSRs. BMC Genom. 2013;14:159.

    CAS  Google Scholar 

  36. Ranjan A, Nigam D, Asif MH, Singh R, Ranjan S, Mantri S, Pandey N, Trivedi I, Rai KM, Jena SN, et al. Genome wide expression profiling of two accession of G. herbaceum L. in response to drought. BMC Genom. 2012;13:94.

    CAS  Google Scholar 

  37. Ren Y, Yang Y, Zhang R, You C, Zhao Q, Hao Y. MdGRF11, an apple 14-3-3 protein, acts as a positive regulator of drought and salt tolerance. Plant Sci. 2019;288:110219.

    CAS  PubMed  Google Scholar 

  38. Richard S, Lapointe G, Rutledge RG, Séguin A. Induction of chalcone synthase expression in white spruce by wounding and jasmonate. Plant Cell Physiol. 2000;41:982–7.

    CAS  PubMed  Google Scholar 

  39. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J. TM4: a free, open-source system for microarray data management and analysis. Biotechniques. 2003;34(2):374–8.

    CAS  PubMed  Google Scholar 

  40. Scheller HV, Jensen PE, Haldrup A, Lunde C, Knoetzel J. Role of subunits in eukaryotic PSI. Biochim Biophys Acta. 2001;1507:41–60.

    CAS  PubMed  Google Scholar 

  41. Sehgal D, Skot L, Singh R, Srivastava RK, Das SP, Taunk J, Sharma PC, Pal R, Raj B, Hash CT, Yadav RS. Exploring potential of pearl millet germplasm association panel for association mapping of drought tolerance traits. PLoS ONE. 2015;10:e0122165.

    PubMed  PubMed Central  Google Scholar 

  42. Selmar D, Kleinwächter M. Stress enhances the synthesis of secondary plant products: the impact of stress-related over-reduction on the accumulation. Plant Cell Physiol. 2013;54(6):817–26.

    CAS  PubMed  Google Scholar 

  43. Shivhare R, Lata C. Selection of suitable reference genes for assessing gene expression in pearl millet under different abiotic stresses and their combinations. Sci Rep. 2016;6:23036.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Shivhare R, Lata C. Exploration of genetic and genomic resources for biotic and biotic stress tolerance in pearl millet. Front Plant Sci. 2017;7:2069.

    PubMed  PubMed Central  Google Scholar 

  45. Shivhare R, Lata C. Assessment of pearl millet genotypes for drought stress tolerance at early and late seedling stages. Acta Physiol Plant. 2019;41:39.

    Google Scholar 

  46. Song K, Kim HC, Shin S, Kim K-H, Moon J-C, Kim JY, et al. Transcriptome analysis of flowering time genes under drought stress in maize leaves. Front Plant Sci. 2017;8:1–12.

    Google Scholar 

  47. Tanaka Y, et al. Structure and characterization of a cDNA clone for phenylalanine ammonia-lyase from cut-injured roots of sweet potato. Plant Physiol. 1989;90:1403–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J, Muller LA, Rhee SY, Stitt M. MAPMAN: a user-driven tool to display genomics data sets on to diagrams of metabolic pathways and other biological processes. Plant J. 2004;37:914–39.

    CAS  PubMed  Google Scholar 

  49. Tullberg A, Alexciev K, Pfannschmidt T, Allen JF. Photosynthetic electron flow regulates transcription of the psaB gene in pea (Pisum sativum L.) chloroplasts through the redox state of the plastoquinone pool. Plant Cell Physiol. 2000;41:1045–54.

    CAS  PubMed  Google Scholar 

  50. Varshney RK, Shi C, Thudi M, Mariac C, Wallace J, Qi P, Zhang H, Zhao Y, Wang W, Rathore A, et al. Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat Biotechnol. 2017;35:969–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wu HY, Liu MS, Lin TP, Cheng YS. Structural and functional assays of AtTLP18.3 identify its novel acid phosphatase activity in thylakoid lumen. Plant Physiol. 2011;157:1015–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Yadav RS, Sehgal D, Vadez V. Using genetic mapping and genomics approaches in understanding and improving drought tolerance in pearl millet. J Exp Bot. 2011;62:397–408.

    CAS  PubMed  Google Scholar 

  53. Yeats TH, Rose JKC. The formation and function of plant cuticles. Plant Physiol. 2013;163(1):5–20.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

CL acknowledges the INSPIRE Faculty Award [IFA-11LSPA-01] from Department of Science & Technology (DST), GoI, New Delhi. RS acknowledges Senior Research Fellowship (Fellow No. 31/08(348)/2018-EMR-I) from Council of Scientific and Industrial Research (CSIR), GoI, New Delhi. The authors are thankful to Dr. Rakesh Srivastava, International Crops Research Institute for the Semi- Arid Tropics, Patancheru, India for providing pearl millet seed materials.

Author information

Authors and Affiliations

Authors

Contributions

CL conceived and designed the experiment and did the funding acquisition. RS and CL conducted the experiments. RS, DL, MHA, PSC and CL analyzed the data. RS and CL wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Charu Lata.

Ethics declarations

Conflict of interest

The authors have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding Editor: Manoj Prasad.

Electronic supplementary material

Below is the link to the electronic supplementary material.

13237_2020_324_MOESM1_ESM.xlsx

DEGs identified in PRLT2/89-33 and H77/833-2. All the genes were sorted with log2 fold change in the range ≥+2.0 and ≤-2.0 and corrected P-values <0.05 (XLSX 7830 kb)

13237_2020_324_MOESM2_ESM.xlsx

Functional annotation of DEGs identified in PRLT2/89-33 and H77/833-2. All the genes were sorted with log2 fold change in the range ≥+2.0 and ≤-2.0 and corrected P-values <0.05. (XLSX 2063 kb)

Supplementary material 3 (PDF 540 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shivhare, R., Lakhwani, D., Asif, M.H. et al. De novo assembly and comparative transcriptome analysis of contrasting pearl millet (Pennisetum glaucum L.) genotypes under terminal drought stress using illumina sequencing. Nucleus 63, 341–352 (2020). https://doi.org/10.1007/s13237-020-00324-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-020-00324-1

Keywords

Navigation