Skip to main content
Log in

Nano-Se as a novel candidate in the management of oxidative stress related disorders and cancer

  • Review Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

Oxidative stress occurs when the antioxidant defense of the cellular system is unable to counteract the formation of reactive oxygen species and/or oxidants, as a result, reactive oxygen species prevails in the system. Oxidative stress leads to damages at macromolecular level and hence is involved in various forms of diseases and disorders. Nanotechnology is a booming field with tremendous potential in biology, biotechnology, medicines and medical technology. Novel nanomaterials and nanodevices are designed and controlled by nanotechnological tools and systems, which inspect and tune the properties, and functions of both living- and non-living materials, at sizes below 100 nm. Selenium (Se) is of fundamental importance to human health. As a potential chemoprotectant, its administration necessitates consumption for a long term, thus the toxicity of selenium is always a crucial concern. Recently, nanotechnology based new form of selenium, i.e., selenium nanoparticle (Nano-Se) has attracted attention of researchers owing to its low toxicity and high bioavailability, because at nano range selenium particles exhibit excellent characteristics, for example great surface area, effective surface activity, lots of surface active centers, high catalytic efficiency, strong adsorbing ability and minor toxicity. This review presents an overview on the novel use of Nano-Se in the management and therapy of oxidative stress related disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahmed HH, Khalil WK, Hamza AH. Molecular mechanisms of Nano-Selenium in mitigating hepatocellular carcinoma induced by N-nitrosodiethylamine (NDEA) in rats. Toxicol Mech Methods. 2014;24:593–602.

    Article  CAS  PubMed  Google Scholar 

  2. Aitken RJ. Baker MA oxidative stress and male reproductive biology. Reprod Fertil Dev. 2004;16:581–8.

    Article  CAS  PubMed  Google Scholar 

  3. Alaejos MS, Romero CD. Urinary selenium concentrations. Clin Chem. 1993;39:2040–52.

    Google Scholar 

  4. Baharara J, Namvar F, Ramezani T, Mousavi M, Mohamad R. Silver nanoparticles biosynthesized using Achillea biebersteinii flower extract: apoptosis induction in MCF-7 cells via caspase activation and regulation of Bax and Bcl-2 gene expression. Molecules. 2015;20:2693–706.

    Article  PubMed  Google Scholar 

  5. Bhattacharjee A, Basu A, Biswas J, Bhattacharya S. Nano-Se attenuates cyclophosphamide-induced pulmonary injury through modulation of oxidative stress and DNA damage in Swiss albino mice. Mol Cell Biol. 2015;405:243–56.

    CAS  Google Scholar 

  6. Bhattacharjee A, Basu A, Ghosh P, Biswas J, Bhattacharya S. Protective effect of Selenium nanoparticle against cyclophosphamide induced hepatotoxicity and genotoxicity in Swiss albino mice. J Biomater Appl. 2014;29:303–17.

    Article  CAS  PubMed  Google Scholar 

  7. Boulaiz H, Alvarez PJ, Ramirez A, Marchal JA, Prados J, Rodríguez-Serrano F, Perán M, Melguizo C, Aranega A. Nanomedicine: application areas and development prospects. Int J Mol Sci. 2011;12:3303–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brozmanova J, Manikova D, Vlckova V, Chovanec M. Selenium: a doubleedged sword for defense and offence in cancer. Arch Toxicol. 2010;84:919–38.

    Article  CAS  PubMed  Google Scholar 

  9. Cadenas E. Mitochondrial free radical production and cell signaling. Mol Aspects Med. 2004;25:17–26.

    Article  CAS  PubMed  Google Scholar 

  10. Chabner BA, Ryan DP, Paz-Ares L, Garcia-Carbonero R, Calabresi P. In: Goodman LS, Hardman JG, Limbird LE, Gilman AG, editors. Goodman and Gilman’s the pharmacological basis of therapeutics. New York: McGraw Hill; 2001. p. 1389–459.

    Google Scholar 

  11. Chen C, Kong AN. Dietary cancer-chemopreventive compounds: from signaling and gene expression to pharmacological effects. Trends Pharmacol Sci. 2005;26:318–26.

    Article  PubMed  Google Scholar 

  12. Chen T, Wong YS, Zheng W, Bai Y, Huang L. Selenium nanoparticles fabricated in Undaria pinnatifida polysaccharide solutions induce mitochondria-mediated apoptosis in A375 human melanoma cells. Coll Surf B Biointerfaces. 2012;67:26–31.

    Article  Google Scholar 

  13. Chen T, Wong YS. Selenocystine induces apoptosis of A375 human melanoma cells by activating ROS-mediated mitochondrial pathway and p53 phosphorylation. Cell Mol Life Sci. 2008;65:2763–75.

    Article  CAS  PubMed  Google Scholar 

  14. Clark LC, Combs GF Jr, Turnbull BW, et al. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional Prevention of Cancer Study Group. JAMA. 1996;276:1957–63.

    Article  CAS  PubMed  Google Scholar 

  15. Conklin KA. Chemotherapy-associated oxidative stress: impact on chemotherapeutic effectiveness. Integr Cancer Ther. 2004;3:294–300.

    Article  CAS  PubMed  Google Scholar 

  16. Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A. Biomarkers of oxidative damage in human disease. Clin Chem. 2006;52:601–23.

    Article  CAS  PubMed  Google Scholar 

  17. Dhalla NS, Temsah RM, Netticadan T. Role of oxidative stress in cardiovascular diseases. J Hypertens. 2000;18:655–73.

    Article  CAS  PubMed  Google Scholar 

  18. Dhanjal S, Cameotra SS. Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil. Microb Cell Fact. 2010;9:52.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Diskin CJ, Tomasso CL, Alper JC, Glaser ML, Fliegel SE. Long-term selenium exposure. Arch Intern Med. 1979;139:824–6.

    Article  CAS  PubMed  Google Scholar 

  20. Gao F, Yuan Q, Gao L, Cai P, Zhu H, Liu R, Wang Y, Wei Y, Huang G, Liang J, Gao X. Cytotoxicity and therapeutic effect of irinotecan combined with selenium nanoparticles. Biomaterials. 2014;35:8854–66.

    Article  CAS  PubMed  Google Scholar 

  21. Guo L, Yan DD, Yang D, Li Y, Wang X, Zalewski O, Yan B, Lu W. Combinatorial photothermal and immuno cancer therapy using chitosan-coated hollow copper sulfide nanoparticles. ACS Nano. 2014;8:5670–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hassan CE, Webster TJ. The effect of red-allotrope selenium nanoparticles on head and neck squamous cell viability and growth. Int J Nanomed. 2016;11:3641–54.

    Article  CAS  Google Scholar 

  23. Hassanin KM, El-Kawi SHA, Hashem KS. The prospective protective effect of selenium nanoparticles against chromium-induced oxidative and cellular damage in rat thyroid. Int J Nanomed. 2013;8:1713–20.

    Google Scholar 

  24. Huang Y, He L, Liu W, Fan C, Zheng W, Wong YS, Chen T. Selective cellular uptake and induction of apoptosis of cancer-targeted selenium nanoparticles. Biomaterials. 2013;34:7106–16.

    Article  CAS  PubMed  Google Scholar 

  25. Jenner P. Oxidative stress in Parkinson’s disease. Ann Neurol. 2003;53:26–36.

    Article  Google Scholar 

  26. Jiang C, Hu H, Malewicz B, Wang Z, Lü J. Selenite-induced p53 Ser-15 phosphorylation and caspase-mediated apoptosis in LNCaP human prostate cancer cells. Mol Cancer Ther. 2004;3:877–84.

    CAS  PubMed  Google Scholar 

  27. Jun JY, Nguyen HH, Paik SYR, Chun HS, Kang BC, Ko S. Preparation of size-controlled bovine serum albumin (BSA) nanoparticles by a modified desolvation method. Food Chem. 2011;127:1892–8.

    Article  CAS  Google Scholar 

  28. Kanwar YS, Wada J, Sun L, Xie P, Wallner EI, Chen S, Chugh S, Danesh FR. Diabetic nephropathy: mechanisms of renal disease progression. Exp Biol Med. 2008;233:4–11.

    Article  CAS  Google Scholar 

  29. Kong L, Yuan Q, Zhu H, Li Y, Guo Q, Wang Q, Bi X, Gao X. The suppression of prostate LNCaP cancer cells growth by Selenium nanoparticles through Akt/Mdm2/AR controlled apoptosis. Biomaterials. 2011;32:6515–22.

    Article  CAS  PubMed  Google Scholar 

  30. Kumar GS, Kulkarni A, Khurana A, Kaur J, Tikoo K. Selenium nanoparticles involve HSP-70 and SIRT1 in preventing the progression of type 1 diabetic nephropathy. Chem Biol Interact. 2014;223C:125–33.

    Article  Google Scholar 

  31. Letavayová L, Vlasakova D, Spallholz JE, Brozmanova J, Chovanec M. Toxicity and mutagenicity of selenium compounds in Saccharomyces cerevisiae. Mutat Res. 2008;638:1–10.

    Article  PubMed  Google Scholar 

  32. Letavayová L, Vlcková V, Brozmanová J. Selenium: from cancer prevention to DNA damage. Toxicology. 2006;227:1–14.

    Article  PubMed  Google Scholar 

  33. Lheureux S, Clarisse B, Launay-Vacher B, Gunzer K, Delcambre-Lair C, BouhierLeporrier K, et al. Evaluation of current practice: management of chemotherapy-related toxicities. Anticancer Drugs. 2011;22:919–25.

    Article  CAS  PubMed  Google Scholar 

  34. Liu T, Zeng L, Jiang W, Fu Y, Zheng W, Chen T. Rational design of cancer-targeted selenium nanoparticles to antagonize multidrug resistance in cancer cells. Nanomedicine. 2015;11:947–58.

    Article  CAS  PubMed  Google Scholar 

  35. Logothetidis S. Nanotechnology in medicine: the medicine of tomorrow and nanomedicine. Hippokratia. 2006;1:7–21.

    Google Scholar 

  36. Luo H, Wang F, Bai Y, Chen T, Zheng W. Selenium nanoparticles inhibit the growth of HeLa and MDA-MB-231 cells through induction of S phase arrest. Coll Surf B Biointerfaces. 2012;94:304–8.

    Article  CAS  Google Scholar 

  37. Miroliaee AE, Esmaily H, Vaziri-Bami A, Baeeri M, Shahverdi AR, Abdollahi M. Amelioration of experimental colitis by a novel nanoselenium–silymarin mixture. Toxicol Mech Methods. 2011;21:200–8.

    Article  CAS  PubMed  Google Scholar 

  38. Mousa SA, Bharali DJ. Nanotechnology-based detection and targeted therapy in cancer: nano-bio paradigms and applications. Cancers (Basel). 2011;3:2888–903.

    Article  CAS  Google Scholar 

  39. Najafian B, Mauer M. Progression of diabetic nephropathy in type 1 diabetic patients. Diabetes Res Clin Pract. 2008;83:1–8.

    Article  PubMed  Google Scholar 

  40. Naziroğlu MI, Cay C. Protective role of intraperitoneally administered vitamin E and selenium on the antioxidative defense mechanisms in rats with diabetes induced by streptozotocin. Biol Trace Elem Res. 2001;79:149–59.

    Article  PubMed  Google Scholar 

  41. Nilsonne G, Sun X, Nystrom C, Rundlof AK, Fernandes AP, Bjornstedt M, Dobra K. Selenite induces apoptosis in sarcomatoid malignant mesothelioma cells through oxidative stress. Free Radic Biol Med. 2006;41:874–85.

    Article  CAS  PubMed  Google Scholar 

  42. Ǿarskov H, Flyvbjerg A. Selenium and human health. Lancet. 2000;356:942–3.

    Google Scholar 

  43. Prasad KS, Selvaraj K. Biogenic synthesis of selenium nanoparticles and their effect on As(III)-induced toxicity on human lymphocytes. Biol Trace Elem Res. 2014;157:275–83.

    Article  CAS  PubMed  Google Scholar 

  44. Ramamurthy Ch, Sampath KS, Arunkumar P, Kumar MS, Sujatha V, Premkumar K, Thirunavukkarasu C. Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess Biosyst Eng. 2013;36:1131–9.

    Article  CAS  PubMed  Google Scholar 

  45. Rathgeber C, Yurkova N, Stackebrandt E, Beatty JT, Yurkov V. Isolation of tellurite- and selenite-resistant bacteria from hydrothermal vents of the Juan de Fuca Ridge in the Pacific Ocean. Appl Environ Microbiol. 2002;68:4613–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rayman MP. Selenium in cancer prevention: a review of the evidence and mechanism of action. Proc Nutr Soc. 2005;64:527–42.

    Article  CAS  PubMed  Google Scholar 

  47. Rezvanfar MA, Rezvanfar MA, Shahverdi AR, Ahmadi A, Baeeri M, Mohammadirad A, Abdollahi M. Protection of cisplatin-induced spermatotoxicity, DNA damage and chromatin abnormality by selenium nano-particles. Toxicol Appl Pharmacol. 2013;266:356–65.

    Article  CAS  PubMed  Google Scholar 

  48. Roberts RA, Smith RA, Safe S, Szabo C, Tjalkens RB, Robertson FM. Toxicological and pathophysiological roles of reactive oxygen and nitrogen species. Toxicology. 2010;276:85–94.

    Article  CAS  PubMed  Google Scholar 

  49. Ryan-Harshman M, Aldoori W. The relevance of selenium to immunity, cancer, and infectious/inflammatory diseases. Can J Diet Pract Res. 2005;66:98–102.

    Article  PubMed  Google Scholar 

  50. Saeidnia S, Abdollahi M. Antioxidants: friends or foe in prevention or treatment of cancer: the debate of the century. Toxicol Appl Pharmacol. 2013;271:49–63.

    Article  CAS  PubMed  Google Scholar 

  51. Schrauzer GN. Selenomethionine: a review of its nutritional significance, metabolism and toxicity. J Nutr. 2000;130:1653–6.

    CAS  PubMed  Google Scholar 

  52. Shakibaie M, Khorramizadeh MR, Faramarzi MA, Sabzevari O, Shahverdi AR. Biosynthesis and recovery of selenium nanoparticles and the effects on matrix metalloproteinase-2 expression. Biotechnol Appl Biochem. 2010;56:7–15.

    Article  CAS  PubMed  Google Scholar 

  53. Shalini S, Bansal MP. Dietary selenium deficiency as well as excess supplementation induces multiple defects in mouse epididymal spermatozoa: understanding the role of selenium in male fertility. Int J Androl. 2008;31:438–49.

    Article  CAS  PubMed  Google Scholar 

  54. Shi L, Xun W, Yue W, Zhang C, Ren Y, Shi L, Wang Q, Yang R, Lei F. Effect of sodium selenite, Se-yeast and nano-elemental selenium on growth performance, Se concentration and antioxidant status in growing male goats. Small Rumin Res. 2001;96:49–52.

    Article  Google Scholar 

  55. Shi LG, Yang RJ, Yue WB, Xun WJ, Zhang XC, Ren YS, Shi L, Lei FL. Effect of elemental Nano-Selenium on semen quality, glutathione peroxidase activity, and testis ultrastructure in male Boer goats. Anim Reprod Sci. 2010;118:248–54.

    Article  CAS  PubMed  Google Scholar 

  56. Simon HU, Haj-Yehia A, Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis. 2000;5:415–8.

    Article  CAS  PubMed  Google Scholar 

  57. Spallholz JE, Palace VP, Reid TW. Methioninase and selenomethionine but not Se-methylselenocysteine generates methylselenol and superoxide in an in vitro chemiluminescent assay: implications for the nutritional carcinostatic activity of selenoamino acids. Biochem Pharmacol. 2004;67:547–54.

    Article  CAS  PubMed  Google Scholar 

  58. Surh YJ. Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer. 2003;3:768–80.

    Article  CAS  PubMed  Google Scholar 

  59. Valdiglesias V, Pásaro E, Méndez J, Laffon B. In vitro evaluation of selenium genotoxic, cytotoxic, and protective effects: a review. Arch Toxicol. 2010;84:337–51.

    Article  CAS  PubMed  Google Scholar 

  60. Vekariya KK, Kaur J, Tikoo K. ERα signaling imparts chemotherapeutic selectivity to selenium nanoparticles in breast cancer. Nanomedicine. 2012;8:1125–32.

    Article  CAS  PubMed  Google Scholar 

  61. Wallace E, Cooper GW, Calvin HI. Effects of selenium deficiency on the shape and arrangement of rodent sperm mitochondria. Gamete Res. 1983;4:389–99.

    Article  Google Scholar 

  62. Wang H, Zhang J, Yu H. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radic Biol Med. 2007;42:1524–33.

    Article  CAS  PubMed  Google Scholar 

  63. Wang Z, Hu H, Li G, Lee HJ, Jiang C, Kim SH, et al. Methylseleninic acid inhibits microvascular endothelial G1 cell cycle progression and decreases tumor microvessel density. Int J Cancer. 2008;122:15–24.

    Article  CAS  PubMed  Google Scholar 

  64. Yazdi MH, Mahdavi M, Varastehmoradi B, Faramarzi MA, Shahverdi AR. The immunostimulatory effect of biogenic selenium nanoparticles on the 4T1 breast cancer model: an in vivo study. Biol Trace Elem Res. 2012;149:22–8.

    Article  CAS  PubMed  Google Scholar 

  65. Yoon SO, Kim MM, Chung AS. Inhibitory effect of selenite on invasion of HT1080 tumor cells. J Biol Chem. 2002;276:20085–92.

    Article  Google Scholar 

  66. Yu YP, Yu GY, Tseng G, Cieply K, Nelson J, Defrances M, et al. Glutathione peroxidase 3, deleted or methylated in prostate cancer, suppresses prostate cancer growth and metastasis. Cancer Res. 2007;67:8043–50.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang J, Wang H, Yan X, Zhang L. Comparison of short-term toxicity between Nano-Se and selenite in mice. Life Sci. 2004;76:1099–109.

    Article  Google Scholar 

  68. Zhang J, Wang X, Xu T. Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with se-methylselenocysteine in mice. Toxicol Sci. 2008;101:22–31.

    Article  CAS  PubMed  Google Scholar 

  69. Zhang JS, Gao XY, Zhang LD, Bao YP. Biological effects of a nano red elemental selenium. BioFactors. 2001;15:27–38.

    Article  PubMed  Google Scholar 

  70. Zhang W, Chen Z, Liu H, Zhang L, Gao P, Li D. Biosynthesis and structural characteristics of selenium nanoparticles by Pseudomonas alcaliphila. Coll Surf B Biointerfaces. 2011;88:196–201.

    Article  CAS  Google Scholar 

  71. Zhang Y, Li X, Huang Z, Zheng W, Fan C, Chen T. Enhancement of cell permeabilization apoptosis-inducing activity of selenium nanoparticles by ATP surface decoration. Nanomed Nanotechnol Biol Med. 2013;9:74–84.

    Article  CAS  Google Scholar 

  72. Zheng JS, Zheng SY, Zhang YB, Yu B, Zheng W, Yang F, Chen T. Sialic acid surface decoration enhances cellular uptake and apoptosis-inducing activity of selenium nanoparticles. Coll Surf B Biointerfaces. 2011;83:183–7.

    Article  CAS  Google Scholar 

  73. Zheng W, Cao C, Liu Y, Yu Q, Zheng C, Sun D, Ren X, Liu J. Multifunctional polyamidoamine-modified selenium nanoparticles dual-delivering siRNA and cisplatin to A549/DDP cells for reversal multidrug resistance. Acta Biomater. 2015;11:368–80.

    Article  CAS  PubMed  Google Scholar 

  74. Zhou X, Wang Y. Influence of dietary nano elemental selenium on growth performance, tissue selenium distribution, meat quality, and glutathione peroxidase activity in Guangxi Yellow chicken. Poult Sci. 2011;90:680–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Arin Bhattacharjee gratefully acknowledges Indian Council of Medical Research (ICMR), New Delhi, for Senior Research Fellowship (No. 45/36/2008/PHA-BMS). Abhishek Basu also gratefully acknowledges Council of Scientific and Industrial Research (CSIR), New Delhi, for Research Associateship [No. 09/030(0075)/2015 EMR-I]. The authors wish to thank the Director, CNCI, for supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudin Bhattacharya.

Additional information

This article is based on the presentation made during the 17th All India Congress of Cytology and Genetics and International Symposium on “Exploring Genomes: The New Frontier” held at CSIR-Indian Institute of Chemical biology, Kolkata in collaboration with Archana Sharma Foundation of Calcutta during December 22-24, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharjee, A., Basu, A., Sen, T. et al. Nano-Se as a novel candidate in the management of oxidative stress related disorders and cancer. Nucleus 60, 137–145 (2017). https://doi.org/10.1007/s13237-016-0183-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-016-0183-2

Keywords

Navigation