Skip to main content
Log in

Evaluation of Chondrogenic Differentiation Ability of Bone Marrow Mesenchymal Stem Cells in Silk Fibroin/Gellan Gum Hydrogels Using miR-30

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The poor proliferative ability of chondrocytes makes complicated the cartilage regeneration after injuries or during the pathological state. Nowadays, stem cells represent a potential tool for different tissues regeneration, including cartilage. Previous studies demonstrated the role of miRNAs (MicroRNAs) in chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) through the in inhibition of specific genes expression. In this study, miR-30a was used to assess the possible chondrogenic differentiation, in combination with silk fibroin/gellan gum (SF/GG) hydrogels, suitable for cells sustaining and proliferation. The SF/GG hydrogel was fabricated combining 2% of gellan gum with 2% of silk fibroin, exploiting the cationic cross-linking of the polysaccharide. For characterization, the hydrogel was lyophilized and used. Scanning electron microscopy was used to characterize the scaffold morphology, while FT-IR spectroscopy was performed to evaluate the chemical properties. Suitability of the produced scaffold for cells adhesion and nutrient and oxygen perfusion was evaluated through water uptake and overall porosity. BMSCs extracted from rats were transfected with miR-30a mimic and inhibitor. MiR-30a expression rates were measured by real time-quantitative polymerase chain reaction (qPCR) monitoring the expression of cartilage-specific gene through reverse transcription-polymerase chain reaction (RT-PCR). Histological assays were used to identify the chondrogenesis of BMSCs on the SF/GG hydrogel. Our results demonstrated the suitability of the SF/GG hydrolgel for cells adhesion, ingrowth and nutrients perfusion. The exposition of cells to the miR-30a demonstrated the potential role of the molecule in chondrogenic differentiation showing an up regulation of cartilage-specific gene. In conclusion, stem cells transfected with miRNA can positively affect articular cartilage regeneration and the potential of BMSCs-encapsulated hydrogel transfected with miR-30a as a therapeutics for osteoarthritis (OA) has been confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. C. Nevitt, S. R. Cummings, K. L. Stone, L. Palermo, D. M. Black, D. C. Bauer, H. K. Genant, M. C. Hochberg, K. E. Ensrud, T. A. Hillier, and J. A. Cauley, J. Bone Miner. Res., 20, 131 (2005).

    Article  PubMed  Google Scholar 

  2. S. Marlovits, P. Zeller, P. Singer, and C. Resinger, V. Vecsei, Eur. J. Radiol., 57, 24 (2006).

    Article  PubMed  Google Scholar 

  3. S. Wakitani, T. Goto, S. J. Pineda, R. G. Young, J. M. Mansour, A. I. Caplan, and V. M. Goldberg, J. Bone Joint Surg. Am., 76, 579 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. C. G. Williams, T. K. Kim, A. Taboas, A. Malik, P. Manson, and J. Elisseeff, Tissue Eng., 9, 679 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. B. Johnstone, T. M. Hering, A. I. Caplan, V. M. Goldberg, and J. U. Yoo, Exp. Cell Res., 238, 265 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. A. D. Murdoch, L. M. Grady, M. P. Ablett, T. Katopodi, R. S. Meadows, and T. E. Hardingham, Stem. Cells., 25, 2786 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. J. T. Oliveira, L. S. Gardel, L. Martins, M. E. Gomes, and R. L. Reis, J. Orthop. Res., 28, 1193 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. J. T. Oliveira, T. C. Santos, L. Martins, R. Picciochi, A. P. Marques, A. G. Castro, N. M. Neves, J. F. Mano, and R. L. Reis, Tissue Eng. Part A, 16, 343 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Y. Wang, H. J. Kim, G. Vunjak-Novakovic, and D. L. Kaplan, Biomaterials, 27, 6064 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. L. D. Koh, Y. Cheng, C. P. Teng, Y. W. Khin, X. J. Loh, S. Y. Tee, M. Low, E. Ye, H. D. Yu, Y. W. Zhang, and M. Y. Han, Prog. Polym. Sci., 46, 86 (2015).

    Article  CAS  Google Scholar 

  11. D. N. Rockwood, R. C. Preda, T. Yucel, X. Wang, M. L. Lovett, and D. L. Kaplan, Nat. Protoc., 6, 1612 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. J. H. Park, H. Y. Jeon, Y. S. Jeon, H. Park, C. M. Kim, J. E. Song, and G. Khang, Polym. Korea, 42, 298 (2018).

    Article  CAS  Google Scholar 

  13. Y. Chen and R. L. Stallings, Cancer Res., 67, 976 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. G. Mao, Z. Zhang, Z. Huang, W. Chen, G. Huang, F. Meng, and Z. Zhang, Y. Kang, Osteoarthr. Cartil., 25, 521 (2017).

    Article  CAS  Google Scholar 

  15. S. Paik, H. S. Jung, S. Lee, D. S. Yoon, M. S. Park, and J. W. Lee, Stem Cells Dev., 21, 3298 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. X. Zhou, J. Wang, H. Sun, Y. Qi, W. Xu, D. Luo, X. Jin, C. Li, W. Chen, Z. Lin, F. Li, R. Zhang, and G. Li, Cell Tissue Res., 366, 143 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Z. L. Xue, Y. L. Meng, and J. H. Ge, Exp. Ther. Med., 14, 1481 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Y. Tian, R. Guo, B. Shi, L. Chen, L. Yang, and Q. Fu, Life Sci., 148, 220 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. L. De Laporte and L. D. Shea, Adv. Drug Deliv. Rev., 59, 292 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Q. L. Loh and C. Choong, Tissue Eng. Part B: Rev., 19, 485 (2013).

    Article  CAS  Google Scholar 

  21. D. K. Kim, J. I. Kim, T. I. Hwang, B. R. Sim, and G. Khang, ACS Appl. Mater. Interfaces, 9, 1384 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. K. S. Anseth, C. N. Bowman, and L. BrannonPeppas, Biomaterials, 17, 1647 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. B. D. Johnson, D. J. Beebe, and W. Crone, Mater. Sci. Eng. C: Biomin. Supramol. Syst., 24, 575 (2004).

    Article  CAS  Google Scholar 

  24. H. J. Sung, C. Meredith, C. Johnson, and Z. S. Galis, Biomaterials, 25, 5735 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Q. A. Lu, B. Zhang, M. Z. Li, B. Q. Zuo, D. L. Kaplan, Y. L. Huang, and H. S. Zhu, Biomacromolecules, 12, 1080 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. K. S. Lee, H. J. Kim, Q. L. Li, X. Z. Chi, C. Ueta, T. Komori, J. M. Wozney, E. G. Kim, J. Y. Choi, H. M. Ryoo, and S. C. Bae, Mol. Cell. Biol., 20, 8783 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. W. M. Bi, J. M. Deng, Z. P. Zhang, R. R. Behringer, and B. de Crombrugghe, Nat. Genet., 22, 85 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. H. Watanabe, Y. Yamada, and K. Kimata, J. Biochem-Tokyo., 124, 687 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilson Khang.

Additional information

Acknowledgment: This research was supported by a grant of the Korea Health Technology R&D Project through KHIDI (HI15C2996).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, E.Y., Park, J.H., Shin, M.E. et al. Evaluation of Chondrogenic Differentiation Ability of Bone Marrow Mesenchymal Stem Cells in Silk Fibroin/Gellan Gum Hydrogels Using miR-30. Macromol. Res. 27, 369–376 (2019). https://doi.org/10.1007/s13233-019-7048-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-019-7048-x

Keywords

Navigation