Skip to main content
Log in

Hierarchical Architectures of PMMA/MWNT-NH2 Particles: a Material for Enhanced Volatile Organic Compound Sensing Performance

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Hierarchical architectures of poly(methyl methacrylate) (PMMA)/amino-functionalized multi-walled carbon nanotube (MWNT-NH2) particles were prepared, in which the electrical conductive network was constructed on the surface of PMMA microspheres. The morphology, composition, and electrical conductivity of the particles were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, and four-probe electrical conductivity measurement. The PMMA/MWNT-NH2 transducers were exposed to each ethanol, water, toluene, and chloroform for volatile organic compounds (VOCs) sensing detection. The particles showed excellent sensitivity, good reversibility, and a strong response compared to the raw MWNTs and MWNT-NH2. This was attributed not only to the formation of a charge transmission path on the particle surface, but also to the interaction between the vapor molecules and functionalized MWNTs. The enhanced sensing performance of the PMMA/MWNT-NH2 particles suggests that it is a good candidate for the preparation of electronic noses for disease diagnostics and VOCs detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada, Y. Y. Broza, S. Billan, R. Abdah-Bortnyak, A. Kuten, and H. Haick, Nat. Nanotechnol., 4, 669 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Z. Q. Xu, Y. Y. Broza, R. Ionsecu, U. Tisch, L. Ding, H. Liu, Q. Song, Y. Y. Pan, F. X. Xiong, K. S. Gu, G. P. Sun, Z. D. Chen, M. Leja, and H. Haick, Br. J. Cancer, 108, 941 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. B. de Lacy Costello, A. Amann, H. Al. Kateb, C. Flynn, W. Filipiak, T. Khalid, D. Osborne, and N. M. Ratcliffe, J. Breath Res., 8, 014001 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. S. Chatterjee, M. Castro, and J. F. Feller, J. Mater. Chem. B, 1, 4563 (2013).

    Article  CAS  Google Scholar 

  5. Y. Y. Broza, L. Zuri, and H. Haick. Sci. Rep., 4, 4611 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. S. Nag, L. Duarte, E. Bertrand, V. Celton, M. Castro, V. Choudhary, P. Guegan, and J. F. Feller, J. Mater. Chem. B, 2, 6571 (2014).

    Article  CAS  Google Scholar 

  7. N. Queralto, A. N. Berliner, B. Goldsmith, R. Martino, P. Rhodes, and S. H. Lim, J. Breath Res., 8, 027112 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. B. Kumar, M. Castro, and J. F. Feller, J. Mater. Chem., 22, 10656 (2012).

    Article  CAS  Google Scholar 

  9. J. Lee, D. Cho, and Y. J. Jeong, Solid State Electron., 87, 80 (2013).

    Article  CAS  Google Scholar 

  10. R. Olejnik, P. Slobodian, P. Riha, and M. Machovsky, J. Appl. Polym. Sci., 12, 621 (2012).

    Google Scholar 

  11. B. Philip, J. K. Abraham, A. Chandrasekhar, and V. K. Varadan, Smart Mater. Struct., 12, 935 (2003).

    Article  CAS  Google Scholar 

  12. J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, and K. Cho, Science, 287, 622 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. J. F. Feller, N. Gatt, B. Kumar, and M. Castro, Chemosensors, 2, 26 (2014).

    Article  Google Scholar 

  14. B. Kumar, M. Castro, and J. F. Feller, Carbon, 50, 3627 (2012).

    Article  CAS  Google Scholar 

  15. J. Li, Y. Lu, and Q. Ye, M. Cinke, and M. Meyyappan, Nano Lett., 3, 929 (2003).

    Article  CAS  Google Scholar 

  16. B. Kumara, Y. T. Parkb, M. Castroa, J. C. Grunlanb, and J. F. Feller, Talanta, 88, 396 (2012).

    Article  CAS  Google Scholar 

  17. G. Peng, U. Tisch, and H. Haick, Nano Lett., 9, 1362 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. J. F. Feller, J. Lu, K. Zhang, B. Kumar, M. Castro, N. Gatta, and H. J. Choi, J. Mater. Chem., 21, 4142 (2011).

    Article  CAS  Google Scholar 

  19. H. F. Xie, C. H. Sheng, X. Chen, X. Y. Wang, Z. Li, and J. Zhou, Sens. Actuators B: Chem., 168, 34 (2012).

    Article  CAS  Google Scholar 

  20. I. S. Lee, M. S. Cho, and H. J. Choi, Polymer, 46, 1317 (2005).

    Article  CAS  Google Scholar 

  21. K. Zhang, J. Y. Lim, H. J. Choi, and Y. Seo, Diamond Relat. Mater., 17, 1604 (2008).

    Article  CAS  Google Scholar 

  22. F. Fixe, M. Dufva, P. Telleman, and C. B. V. Christensen, Nucleic Acids Res., 32, e9 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. K. Y. Chun, I. K. Moon, J. H. Han, S. H. Do, J. S. Lee, and S. Y. Jeon, Nanoscale, 5, 10171 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. T. Ramanathan, H. Liu, and L. C. Brinson, J. Polym. Sci., Part B: Polym. Phys., 43, 2269 (2005).

    Article  CAS  Google Scholar 

  25. T. Ramanathan, F. T. Fisher, R. S. Ruoff, and L. C. Brinson, Chem. Mater., 17, 1290 (2005).

    Article  CAS  Google Scholar 

  26. K. Zhang, J. Y. Lim, and H. J. Choi, Diamond Relat. Mater., 18, 316 (2009).

    Article  CAS  Google Scholar 

  27. S. Benykhlef, A. Bekhoukh, R. Berenguer, A. Benyoucef, and E. Morallon, Colloid Polym. Sci., 294, 1877 (2016).

    Article  CAS  Google Scholar 

  28. F. Chouli, I. Radja, E. Morallon, and A. Benyoucef, Polym. Compos., 38, E254 (2017).

    Article  CAS  Google Scholar 

  29. M. K. Liu, Y. F. Du, Y.-E Miao, Q. W. Ding, S. X. He, W. W. Tjiu, J. S. Pan, and T. X. Liu, Nanoscale, 7, 1037 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. K. Zhang and H. J. Choi, Diamond Relat. Mater., 20, 275 (2011).

    Article  CAS  Google Scholar 

  31. Y. D. Liu, B. J. Park, Y. H. Kim, and H. J. Choi, J. Mater. Chem., 21, 17396 (2011).

    Article  CAS  Google Scholar 

  32. Y. H. Shih and M. S. Li, J. Hazard. Mater., 154, 21 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. B. Pan and B. S. Xing, Environ. Sci. Technol., 42, 9005 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. C. M. Yang, H. Kanoh, K. Kaneko, M. Yudasaka, and S. Iijima, J. Phys. Chem. B, 106, 8994 (2002).

    Article  CAS  Google Scholar 

  35. C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, Wiley-VCH, Weinheim, 2003.

    Google Scholar 

  36. J. Burke, Solubility Parameters: Theory and Application, The Oakland Museum of California, California, 1984.

    Google Scholar 

  37. S. Grassini, E. Angelini, M. Parvis, and F. Faraldia, Surf. Interface Anal., 44, 1068 (2012).

    Article  CAS  Google Scholar 

  38. C. Gau, C. Y. Kuo, and H. S. Ko, Nanotechnology, 20, 395705 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyoung Jin Choi or Siqin Zhao.

Additional information

Acknowledgments: This work is supported by National Natural Science Foundation of China (No. 21367020), Natural Science Foundation of Inner Mongolia Autonomous Region (No. 2016MS0226).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Sun, Y., Choi, H.J. et al. Hierarchical Architectures of PMMA/MWNT-NH2 Particles: a Material for Enhanced Volatile Organic Compound Sensing Performance. Macromol. Res. 26, 788–793 (2018). https://doi.org/10.1007/s13233-018-6114-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-018-6114-0

Keywords

Navigation