Skip to main content
Log in

Functional Graphene Oxide-Based Nanosheets for Photothermal Therapy

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Cancer is one of the main causes of morbidity and mortality. Although a number of techniques are available for treatment, these methods still have a number of drawbacks, destroying healthy tissues and cells to cause various side effects. Here we present the synthesis and biological application of a composite nanomaterial, folic acid (FA)-conjugated graphene oxide (GO) nanosheets functionalized with manganese dioxide (MnO2) nanoparticles. While FA-conjugated GO nanosheets can be used for targeted photothermal therapy (PTT) when irradiated with a near infrared (NIR) light, MnO2 nanoparticles degrade hydrogen peroxide (H2O2) in the cancer microenvironment, countering hypoxia. Further the nanoparticles can be used as a contrast agent in MRI imaging. We demonstrated that MnO2-FA-GO nanosheets were uptaken by HeLa cells overexpressing FA receptors to induce NIR irradiation-mediated hyperthermia (35% viability). Therefore, this composite MnO2-FA-GO nanosheet could be a powerful carrier for cancer targeting and PTT applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. IARC, World Cancer Report 2014, World Health Organization, Lyon, 2014.

  2. F. M. Kievit and M. Zhang, Acc. Chem. Res., 44, 853 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. C. P. Nolsøe, S. Torp-Pedersen, F. Burcharth, T. Horn, S. Pedersen, N. E. Christensen, E. S. Olldag, P. H. Andersen, S. Karstrup, and T. Lorentzen, Radiology, 187, 333 (1993).

    Article  PubMed  Google Scholar 

  4. J. A. Bertout, S. A. Patel, and M. C. Simon, Nat. Rev. Cancer, 8, 967 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. S. Masuda and J. C. I. Belmonte, Nat. Rev. Clin. Oncol., 10, 79 (2013).

    Article  Google Scholar 

  6. M. Milosevic, P. Warde, C. Ménard, P. Chung, A. Toi, A. Ishkanian, M. McLean, M. Pintilie, J. Sykes, M. Gospodarowicz, C. Catton, R. P. Hill, and R. Bristow, Clin. Cancer Res., 18, 2108 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. T. D. Eubank, R. D. Roberts, M. Khan, J. M. Curry, G. J. Nuovo, P. Kuppusamy, and C. B. Marsh, Cancer Res., 69, 2133 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. J. Beik, Z. Abed, F. S. Ghoreishi, S. Hosseini-Nami, S. Mehrzadi, A. Shakeri-Zadeh, and S. K. Kamrava, J. Control. Release, 235, 205 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. N. S. Abadeer and C. J. Murphy, J. Phys. Chem. C, 120, 4691 (2016).

    Article  CAS  Google Scholar 

  10. R. Weissleder, Nat. Biotechnol., 19, 316 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, Proc. Natl. Acad. Sci. U.S.A., 100, 13549 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, Cancer Lett., 239, 129 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, J. Am. Chem. Soc., 128, 2115 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. P. Qiu, M. Yang, X. Qu, Y. Huai, Y. Zhu, and C. Mao, Biomaterials, 104, 138 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. H. Zheng, B. Chen, H. Yu, X. Li, J. Zhang, J. Sun, L. Tong, Z. Wu, H. Zhong, R. Hua, and H. Xia, Sens. Actuator B-Chem., 234, 286 (2016).

    Article  CAS  Google Scholar 

  16. C. Chen, S. Wang, L. Li, P. Wang, C. Chen, Z. Sun, and T. Song, Biomaterials, 104, 352 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. J. Liu, L. Cui, and D. Losic, Acta Biomater., 9, 9243 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. Sanchez Casalongue, D. Vinh, and H. Dai, J. Am. Chem. Soc., 133, 6825 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Y. A. Cheon, J. H. Bae, and B. G. Chung, Langmuir, 32, 2731 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Q. Wu, M. Chu, Y. Shao, F. Wo, and D. Shi, Carbon, 108, 21 (2016).

    Article  CAS  Google Scholar 

  21. H. Zhang, H. Wu, J. Wang, Y. Yang, D. Wu, Y. Zhang, Y. Zhang, Z. Zhou, and S. Yang, Biomaterials, 42, 66 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. S. Kim, S. M. Ahn, J.-S. Lee, T. S. Kim, and D.-H. Min, 2D Materials, 4, 025069 (2017).

    Article  CAS  Google Scholar 

  23. S. Wang, Q. Zhang, P. Yang, X. Yu, L.-Y. Huang, S. Shen, and S. Cai, ACS Appl. Mater. Interfaces, 8, 3736 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. M. Song, T. Liu, C. Shi, X. Zhang, and X. Chen, ACS Nano, 10, 633 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. M. Gulfam and B. G. Chung, Macromol. Res., 22, 412 (2014).

    Article  CAS  Google Scholar 

  26. H. I. Seo, A.-N. Cho, J. Jang, D.-W. Kim, S.-W. Cho, and B. G. Chung, Nanomedidine, 11, 1861 (2015).

    Article  CAS  Google Scholar 

  27. A.-R. Blaudszun, G. Moldenhauer, M. Schneider, and A. Philippi, J. Control. Release, 197, 58 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. A. M. Bugaj, Photochem. Photobiol. Sci., 10, 1097 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. F. Danhier, A. L. Breton, and V. Préat, Mol. Pharm., 9, 2961 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Y. Hu, L. He, J. Ding, D. Sun, L. Chen, and X. Chen, Carbohydr. Polym., 144, 223 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. C. R. Gordijo, A. Z. Abbasi, M. A. Amini, H. Y. Lip, A. Maeda, P. Cai, P. J. O’Brien, R. S. DaCosta, A. M. Rauth, and X. Y. Wu, Adv. Funct. Mater., 25, 1858 (2015).

    Article  CAS  Google Scholar 

  32. C. P. Leamon and P. S. Low, Proc. Natl. Acad. Sci. U.S.A., 88, 5572 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. P. S. Low and S. A. Kularatne, Curr. Opin. Chem. Biol., 13, 256 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. I. B. Bwatanglang, F. Mohammad, N. A. Yusof, J. Abdullah, N. B. Alitheen, M. Z. Hussein, N. Abu, N. E. Mohammed, N. Nordin, N. R. Zamberi, and S. K. Yeap, J. Colloid Interface Sci., 480, 146 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. A. Sarkar, S. Ghosh, S. Chowdhury, B. Pandey, and P. C. Sil, Biochim. Biophys. Acta, 1860, 2065 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. S. K. Sriraman, G. Salzano, C. Sarisozen, and V. Torchilin, Eur. J. Pharm. Biopharm., 105, 40 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958).

    Article  CAS  Google Scholar 

  38. Z. Hu, J. Li, C. Li, S. Zhao, N. Li, Y. Wang, F. Wei, L. Chen, and Y. Huang, J. Mater. Chem. B, 1, 5003 (2013).

    Article  CAS  Google Scholar 

  39. G. Han, Y. Liu, E. Kan, J. Tang, L. Zhang, H. Wang, and W. Tang, RSC Adv., 4, 9898 (2014).

    Article  CAS  Google Scholar 

  40. F. Muhammad, M. Guo, Y. Guo, W. Qi, F. Qu, F. Sun, H. Zhao, and G. Zhu, J. Mater. Chem., 21, 13406 (2011).

    Article  CAS  Google Scholar 

  41. Sudesh, N. Kumar, S. Das, C. Bernhard, and G. D. Varma, Supercond. Sci. Technol., 2013, 26, 095008

    Article  CAS  Google Scholar 

  42. C.-Y. Su, Y. Xu, W. Zhang, J. Zhao, X. Tang, C.-H. Tsai, and L.-J. Li, Chem. Mater., 21, 5674 (2009).

    Article  CAS  Google Scholar 

  43. P. Huang, C. Xu, J. Lin, C. Wang, X. Wang, C. Zhang, X. Zhou, S. Guo, and D. Cui, Theranostics, 1, 240 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. P. Mulvaney, R. Cooper, F. Grieser, and D. Meisel, J. Phys. Chem., 94, 8339 (1990).

    Article  CAS  Google Scholar 

  45. E. H. M. Sakho, O. S. Oluwafemi, S. Thomas, and N. Kalarikkal, J. Mater. Sci., Mater. Electron., 28, 2651 (2017).

    Article  CAS  Google Scholar 

  46. Z. Chen, S. Berciaud, C. Nuckolls, T. F. Heinz, and L. E. Brus, ACS Nano, 4, 2964 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. A. A. Torrano and C. Bräuchle, Beilstein J. Nanotechnol., 5, 1616 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Y. Yong, L. Zhou, S. Zhang, L. Yan, Z. Gu, G. Zhang, and Y. Zhao, NPG Asia Mater., 8, e273 (2016).

    Article  CAS  Google Scholar 

  49. W. W. Zhu, K. Liu, X. Q. Sun, X. Wang, Y. G. Li, L. Cheng, and Z. Liu, ACS Appl. Mater. Interfaces, 7, 11575 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bong Geun Chung.

Additional information

Acknowledgments: This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute, funded by the Ministry of Health & Welfare, Republic of Korea (Grant number HI14C3347). This research was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Ministry of Science and ICT (MSIT) (Grant number 2015M3A9D7030461). This work was also supported by Leading Foreign Research Institute Recruitment Program through the NRF funded by the MSIT (Grant number 2013K1A4A3055268).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, J.H., Kim, D.E., Kim, EJ. et al. Functional Graphene Oxide-Based Nanosheets for Photothermal Therapy. Macromol. Res. 26, 557–565 (2018). https://doi.org/10.1007/s13233-018-6067-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-018-6067-3

Keywords

Navigation