Skip to main content
Log in

iTRAQ-based proteomic analysis of responses of Lactobacillus plantarum FS5-5 to salt tolerance

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Lactobacillus plantarum FS5-5 (L. plantarum FS5-5) is a salt-tolerant probiotic strain, which had been isolated from northeast Chinese traditionally fermented Dajiang. We analyzed the underlying molecular mechanisms of L. plantarum FS5-5 after salt stress by isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics and bioinformatics analysis. L. plantarum FS5-5 was treated with low (1.5, 3.0, 4.0, and 5.0% (w/v) NaCl) and high (6.0, 7.0, and 8.0% (w/v) NaCl) salt stress. Differentially expression proteins (DEPs) of all groups were measured by quantitative proteomic approach of iTRAQ with LC–MS/MS. Furthermore, DEPs were identified by Mascot and GO, and bioinformatics analysis was conducted by KEGG. Thirty DEPs (P < 0.05) between low salt stress and control condition (0% (w/v) NaCl) were mapped and classified into nine functional groups; 122 DEPs (P < 0.05) between high salt stress and control condition were mapped and classified into 15 functional groups. In all groups, most proteins were involved in amino acid metabolism, carbohydrate metabolism, nucleotide metabolism, and ATP-binding cassette (ABC) transporter. We found that six proteins (metS, GshAB, GshR3, PepN, GshR4, and serA) involved in amino acid metabolism, three proteins (I526_2330, Gpd, and Gnd) involved in carbohydrate metabolism, and one protein (N876_0118940) involved in peptidoglycan hydrolysis were upregulated after salt stress. Conclusively, optimal L. plantarum FS5-5 growth was dependent on the collective action of different regulatory systems, with each system playing an important role in adapting to salt stress. There may be some relationship between the upregulated proteins of L. plantarum FS5-5 and salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Behera SS, Ray RC, Zdolec N (2018) Lactobacillus plantarum with functional properties: an approach to increase safety and shelf-life of fermented foods. Biomed Res Int 2018:1–18

    Article  CAS  Google Scholar 

  • Belfiore C, Fadda S, Raya R, Vignolo G (2013) Molecular basis of the adaption of the anchovy isolate Lactobacillus sakei CRL1756 to salted environments through a proteomic approach. Food Res Int 54:1334–1341. https://doi.org/10.1016/j.foodres.2012.09.009

  • Bengoa AA, Llamas MG, Iraporda C, Dueñas MT, Abraham AG, Garrote GL (2018) Impact of growth temperature on exopolysaccharide production and probiotic properties of Lactobacillus paracasei strains isolated from kefir grains. Food Microbiol 69:212–218

    Article  CAS  PubMed  Google Scholar 

  • Braford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  Google Scholar 

  • Considine KM, Sleator RD, Kelly AL, Fitzgerald GF, Hill C (2011) A role for proline synthesis and transport in Listeria monocytogenes barotolerance. J Appl Microbiol 110:1187–1194

    Article  CAS  PubMed  Google Scholar 

  • Engelhardt T, Szakmár K, Kiskó G, Mohácsi-Farkas C, Reichart O (2018) Combined effect of NaCl and low temperature on antilisterial bacteriocin production of Lactobacillus plantarum ST202Ch. LWT 89:104–109

    Article  CAS  Google Scholar 

  • Feliciano CP, Rivera WL (2016) Data on preparation of psychrotolerant bacterium Shewanella olleyana sp. nov. cells for transmission electron microscopy. Data in Brief 9(C):710–715. https://doi.org/10.1016/j.dib.2016.09.049

  • Gao K, Deng X, Shang M, Qin G, Hou C, Guo X (2017) iTRAQ-based quantitative proteomic analysis of midgut in silkworm infected with Bombyx mori cytoplasmic polyhedrosis virus. J Proteome 152:300–311

    Article  CAS  Google Scholar 

  • Gill HS, Rutherfurd KJ, Prasad J (2000) Enhancement of natural and acquired immunity by Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019). Br J Nutr 83(2):167–176

    Article  CAS  PubMed  Google Scholar 

  • Heunis T, Deane S, Smit S, Dicks LM (2014) Proteomic profiling of the acid stress response in Lactobacillus plantarum 423. J Proteome Res 13(9):4028–4039

    Article  CAS  PubMed  Google Scholar 

  • Jones PG, Mitta M, Kim Y, Jiang W, Inouye M (1996) Cold shock induces a major ribosomal-associated protein that unwinds double-stranded RNA in Escherichia coli. Proc Natl Acad Sci U S A 87:5589–5593

    Google Scholar 

  • Jones ML, Martoni CJ, Parent M, Prakash S (2012) Cholesterol-lowering efficacy of a microencapsulated bile salt hydrolase-active Lactobacillus reuteri NCIMB 30242 yoghurt formulation in hypercholesterolaemic adults. Br J Nutr 107(10):1505–1513

    Article  CAS  PubMed  Google Scholar 

  • Kaur G, Alia SA, Kumar S, Mohanty AK, Behare P (2017) Label-free quantitative proteomic analysis of Lactobacillus fermentum NCDC 400 during bile salt exposure. J Proteome 167(7):36–45

    Article  CAS  Google Scholar 

  • Kleerebezem M, Boekhorst J, Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MW, Stiekema W, Lankhorst RM, Bron PA, Hoffer SM, Groot MN, Kerkhoven R, Vries M, Ursing B, Vos WM, Siezen RJ (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci 100(4):1990–1995

    Article  CAS  PubMed  Google Scholar 

  • Koponen J, Laakso K, Koskenniemi K, Kankainen M, Savijoki K, Nyman TA, Vos WM, Tynkkynen S, Kalkkinen N, Varmanen P (2012) Effect of acid stress on protein expression and phosphorylation in Lactobacillus rhamnosus GG. J Proteome 75(4):1357

    Article  CAS  Google Scholar 

  • Kovářová J, Barrett MP (2016) The pentose phosphate pathway in parasitic trypanosomatids. Trends Parasitol 32(8):622–634 https://doi.org/10.1016/j.pt.2016.04.010

  • Lee JY, Pajarillo EA, Kim MJ, Chae JP, Kang DK (2013) Proteomic and transcriptional analysis of Lactobacillus johnsonii PF01 during bile salt exposure by iTRAQ shotgun proteomics and quantitative RT-PCR. J Proteome Res 12:432–443

    Article  CAS  PubMed  Google Scholar 

  • Li C, Liu L, Sun D, Chen J, Liu N (2012) Response of osmotic adjustment of Lactobacillus bulgaricus to NaCl stress. Journal of Northeast Agricultural University (English Edition) 19:66–74

    Google Scholar 

  • Li JY, Jin MM, Meng J, Gao SM, Lu RR (2013) Exopolysaccharide from Lactobacillus planterum LP6: antioxidation and the effect on oxidative stress. Carbohydr Polym 98(1):1147–1152

    Article  CAS  PubMed  Google Scholar 

  • Li J, Liu X, Xiang Y, Ding X, Wang T, Liu Y, Yin M, Tan C, Deng F, Chen L (2017a) Alpha-2-macroglobulin and heparin cofactor II and the vulnerability of carotid atherosclerotic plaques:An iTRAQ-based analysis. Biochem Biophys Res Commun 483:964–971

    Article  CAS  PubMed  Google Scholar 

  • Li M, Zhang K, Long R, Sun Y, Kang J, Zhang T, Cao S (2017b) iTRAQ-based comparative proteomic analysis reveals tissue-specific and novel ealy-stage molecular mechanisms of salt stress response in Carex rigescens. Environ Exp Bot 143:99–114

    Article  CAS  Google Scholar 

  • Lin J, Wu Y, Han B, Chen Y, Wang L, Li X, Liu M, Huang J (2017) iTRAQ-based proteomic profiling of granulosa cells from lamb and ewe after superstimulation. Theriogenology 101:99–108

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Padan E, Bibi E, Ito M, Krulwich T (2005) Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta (BBA)-Biomembr 1717(2):67–88

    Article  CAS  Google Scholar 

  • Roberts MF (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Systems 1(1):5. https://doi.org/10.1186/1746-1448-1-5

  • Romeo Y, Bouvier J, Gutierrez C (2001) Osmotic stress response of lactic acid bacteria Lactococcus lactis and Lactobacillus plantarum (mini-revue). Lait 81:49–55

    Article  CAS  Google Scholar 

  • Shi S, Chen T, Zhang Z, Chen X, Zhao X (2009) Transcriptome analysis guided metabolic engineering of Bacillus subtilis for riboflavin production. Metab Eng 11:243–252

    Article  CAS  PubMed  Google Scholar 

  • Song X, Wang Q, Xu X, Lin J, Wang X, Xue Y, Wu R, An Y (2016) Isolation and analysis of salt response of Lactobacillus plantarum FS5-5 from Dajiang. Indian J Microbiol 56(4):1–10

    Article  CAS  Google Scholar 

  • Tao H, Zhang Y, Cao X, Deng Z, Liu T (2016) Absolute quantification of proteins in the fatty acid biosynthetic pathway using protein standard absolute quantification. Synth Syst Biotechnol (3):150–157

  • Veith N, FeldmanSalit A, Cojocaru V, Henrich S, Kummer U, Wade RC (2017) Organism-adapted specificity of the allosteric regulation of pyruvate kinase in lactic acid bacteria. PLoS Comput Biol 9(7):1–15

    Google Scholar 

  • Wang DH (2015) Glutathione is involved in physiological response of Candida utilis to acid stress. Appl Microbiol Biotechnol 99(24):10669–10679

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Chen C, Ai L, Zhou F, Zhou Z, Wang L, Zhang H, Chen W, Guo B (2011) Complete genome sequence of the probiotic Lactobacillus plantarum ST-III. J Bacteriol 193(1):313–314

  • Wu R, Zhang W, Sun T, Wu J, Yue X, Meng H, Zhang H (2011) Proteomic analysis of response of a new probiotic bacterium Lactobacillus casei Zhang to low acid stress. Int J Food Microbiol 147:181–187

    Article  CAS  PubMed  Google Scholar 

  • Wu R, Song X, Liu Q, Ma D, Xu F, Wang Q, Tang X, Wu J (2016) Gene expression of Lactobacillus plantarum FS5-5 in response to salt stress. Ann Microbiol 66:1181–1188

    Article  CAS  Google Scholar 

  • Xia K, Zang N, Zhang J, Zhang H, Li Y, Liu Y, Feng W, Liang X (2016) New insights into the mechanisms of acetic acid resistance in Acetobacter pasteurianus using iTRAQ-dependent quantitative proteomic analysis. Int J Food Microbiol 238:241–251

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Zhang Z, Gu T, Dong M, Peng Q, Bai L, Li Y (2017) Quantitative proteomics reveals ecological fitness cost of multi-herbicide resistant barnyardgrass (Echinochloa crus-galli L.). J Proteome 150(6):160–169

    Article  CAS  Google Scholar 

  • Yu H, Wang X, Xu J, Ma Y, Zhang S, Yu D, Fei D, Muhammad A (2017) iTRAQ-based quantitative proteomics analysis of molecular mechanisms associated with Bombyx mori (Lepidoptera) larval midgut response to BmNPV in susceptible and near-isogenic strains. J Proteome 165:35–50

    Article  CAS  Google Scholar 

  • Zaidi AH, Bakkes PJ, Lubelski J, Agustiandari H, Kuipers OP, Driessen AJ (2008) The ABC-type multidrug resistance transporter LmrCD is responsible for an extrusion-based mechanism of bile acid resistance in Lactococcus lactis. J Bacteriol 190(22):7357–7366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhang Y, Zhu Y, Mao S, Li Y (2010) Proteomic analyses to reveal the protective role of glutathione in resistance of Lactococcus lactis to osmotic stress. Appl Environ Microbiol 76(10):3177–3186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao S, Zhang Q, Hao G, Liu X, Zhao J, Chen Y, Zhang H, Chen W (2014) The protective role of glycine betaine in Lactobaciluus plantarum ST-III against salt stress. Food Control 44:208–213

    Article  CAS  Google Scholar 

  • Zou X, Feng Z, Li Y, Wang Y, Wertz K, Weber P, Yan F, Liu J (2014) Stimulation of GSH synthesis to prevent oxidative stress-induced apoptosis by hydroxytyrosol in human retinal pigment epithelial cells: activation of Nrf2 and JNK-p62/SQSTM1 pathways. J Nutr Biochem 78(8):70–78

    Google Scholar 

Download references

Funding

This work was financially supported by Natural Science Foundation of China (Grant No.31471713, 31470538, 31000805),Program for Liaoning Excellent Talents in University (Grant No.LR2015059, LjQ2015103), Shenyang Agricultural University Tianzhushan Scholar program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junrui Wu or Rina Wu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Wang, Q., Song, X. et al. iTRAQ-based proteomic analysis of responses of Lactobacillus plantarum FS5-5 to salt tolerance. Ann Microbiol 69, 377–394 (2019). https://doi.org/10.1007/s13213-018-1425-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-018-1425-0

Keywords

Navigation