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Abstract Bacillus strains isolated from several stages of
white asparagus production/processing before/after thermal
treatment were characterized molecularly by BOX–PCR
amplification and 16S ribosomal gene sequencing. Analysis
of these sequences showed that the isolates belong to a
variety of phylogenetic groups that are closely related to
species of the genus Bacillus, such as B. subtilis subsp.
spizizenii NRRL B-23049T, B. tequilensis NRRL B-
41771 T, B. safensis FO-036bT, B. licheniformis ATCC
14580T, B. aryabhattai B8W22T, and B. anthracis ATCC
14578T. Some Bacillus sp. strains were related to B.
endophyticus, several isolates were associated with B.
tequilensis and B. subtilis subsp. inaquosorum, and others
were included in the same cluster of species as B. subtilis
subsp. subtilis, B. vallismortis, B. amyloliquefaciens subsp.
plantarum, and B. methylotrophicus. Strains closely related
to Paenibacillus peoriae DSM 8320T were also found.

Keywords Bacillus sp. . Paenibacillus sp. . Molecular
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Introduction

Cultivated asparagus (Asparagus officinalis) is a popular
vegetable widely consumed worldwide. Peru has emerged
has the leading exporter of asparagus, with a share of around
20% of the global market. Most of the major asparagus farms
and associated processing industries are located in the

northwest of the country, but asparagus is grown in almost
all of the coastal regions (from Piura to Arequipa), totaling
around 28 thousand hectares. In 2010, asparagus exports were
worth US$426.4 million (CENTRUM Católica 2011). Be-
cause of the commercial value of Peruvian canned asparagus
(US$105.5 million), most of which is exported to the USA
and Europe, the industry focuses on the microbiological and
texture aspects, such as quality parameters.

Food quality, particularly that of vegetables and fruits, can
be adversely affected by microbiological spoilage. Such
spoilage, although generally not harmful to human health, is
undesirable commercially because it limits the shelf life or
leads to quality complaints. More serious is the presence or
growth of infectious or toxigenic microorganisms (foodborne
pathogens), which represent the worst forms of quality
deterioration due to the potential health risk to the consumer
(ICMSF 1996). Contamination of industrial food processing
plants and products with aerobe endospore-forming bacteria is
a well-recognized and widespread problem (De Clerck et al.
2004). The persistence of these bacteria in the final product,
due to their notorious longevity, wide nutritional versatility,
and wide pH and temperature ranges for the growth and
formation of endospores, which are much more resistant to
heat, some chemicals, irradiation, and desiccation than
vegetative forms, makes this group of bacteria an ever-
present problem in various food processing industries (Brown
2000). Within the group of spore-forming bacteria, Bacillus
sp. is commonly found on vegetal cultures. Some species of
this genus are beneficial for plant growth, but others can cause
human diseases or affect the quality of the product itself.

Despite the technological advances that have been made in
recent years, food safety problems continue to exist, and
thermal treatment remains the most applied technique to obtain
pasteurization or sterilization of food products. However,
thermal treatment may have a detrimental effect on the aroma,
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flavor, and nutritive properties of the final product, as well as
causing vitamin loss and protein denaturation (Winter 2003).
Bearing in mind that canned asparagus is not subjected to
very long heat treatments due to the degradation of texture, it
is important that canned asparagus processors take into
account the fact that bacteria can persist during the processing
of food. Therefore, an optimal thermal treatment process
needs to be designed which can destroy the microorganisms
while preserving the fresh appearance and sensorial character-
istics of the asparagus.

Molecular characterization based on repetitive ele-
ment (rep)–PCR fingerprint (Versalovic et al. 1991;
Martin et al. 1994; Versalovic et al. 1994) has proved to be
a reliable technique for genomic analysis that enables
identification of intraspecific diversity in bacteria. Repet-
itive regions present a higher variability than other
genomic regions and can be used to analyze the genetic
relationship between strains (Van Belkum et al. 1998; Kim
et al. 2001). Lopez and Alippi (2007) used rep-PCR
genomic fingerprinting for characterizing populations of
Bacillus recovery from foods during the industrial process
and to evaluate diversity. Cherif et al. (2003) evaluated the
genetic relationship in the Bacillus cereus group also
using this method. 16S rRNA gene sequence analysis is
the most commonly used method for identifying bacteria
or for constructing bacterial phylogenetic relationships
(Woese, 1987; Vandamme et al. 1996; Joung and Cote
2002). The aim of the study reported here was to identify
the diversity of Bacillus sp. bacteria present at different
pre-thermal steps of the white canned asparagus process
industrial chain through BOX-A1R-based repetitive extra-
genic palindromic–PCR (BOX–PCR) fingerprinting and
16S rRNA gene sequencing in order to achieve timely
adjustments in the thermal process parameters and ensure
a successful quality of the final product..

Materials and methods

Sampling procedure

Samples were taken in a two-phase study from one farm
located in the northwest of Peru that produces asparagus for
processing into canned white asparagus. The farmer and
manufacturer have naturally adapted their growing con-
ditions to satisfy the demanding protocols of Good
Agricultural Practices and have the US-GAP, GLOBAL-
GAP, and HACCP certifications.

In phase I, cultured soil and white asparagus samples
were selectively taken from diverse field plots in high
traffic areas and other areas where contamination can occur.
Sampling was performed on three occasions during a period
of 6 months, with the crops in different growth stages

(vegetative state, hoeing, and harvesting). Each composite
soil sample comprised 15–20 cores collected in a grid
pattern, as previously described by the NRCS-USDA
(Natural Resources Conservation Service–U.S. Department
of Agriculture 2002). The soil samples were kept asepti-
cally in Ziploc bags, transported briefly in insulated
coolers, and maintained at 4°C until ready for transport to
the university laboratories for analysis, arriving at the lab
after no more than 6 h after collection. Asparagus samples
at harvest time were also collected aseptically in Ziploc
bags (up to approx. 800 g) and subsequently treated in the
same way as the soil samples.

In phase II, asparagus products were sampled three times at
the processing plant, during a period of 6 months. Samples
were taken along the process industrial chain upon arrival at
the receiving dock, after washing with water–air sparging,
after hydro-cooling, after cutting and peeling, and 1 and 3
h after filling and sealing the cans (pre-thermal processing).
The samples were collected in the same way as the asparagus
in phase I, cooled at 4°C, and transported to the lab within 6
h after sampling.

Isolation of spore-forming strains

The first step in the isolation of spore-forming bacteria
strains was to eliminate vegetative cells by heat
treatment of the samples. Serial decimal dilutions were
made and inoculated onto plates tryptone glucose
extract agar (TGE) plates. The plates were then
incubated at 35° and 55°C under aerobic and anaerobic
conditions for isolation of mesophilic and thermophilic
microorganisms (APHA 1998). Colonies of strains were
chosen that represented all of the colony types that could
be distinguished visually, and these were purified by
reculturing on the same medium. Isolates were identified
as Bacillus sp. or Paenibacillus sp. by morphological
analysis. These strains were Gram-positive, catalase-
positive, spore-forming microorganisms. Pure cultures
were stored in Casoy broth supplemented with glycerol
(2:1, v/v) at −80°C.

Molecular characterization

DNA extraction

Total genomic DNA of strains of spore-forming bacteria
were extracted from overnight liquid culture in TGE broth
grown at 35°C using the AxyPrep Bacterial Genomic DNA
Miniprep kit (Axygen Scientific, Union City, CA). DNA
quality was verified and quantified by electrophoresis in
1% agarose gels by comparison to a 1- kb lambda DNA
ladder (Fermentas, Burlington, ON, Canada) after staining
with 0.5 μg/ml ethidium bromide.
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BOX–PCR amplification

PCR reactions and amplification were performed by
using primer BOX A1R (5 ′-CTACGGCAAGG
CGACGCTGACG-3′) as described by Versalovic et al.
(1991). DNA was amplified in 25-μl volumes of master
mix containing 1–8 μl DNA, 1.25 mM dNTPs, 7.5 mM
MgCl2, 0.80 pmol/ml primer BOX A1R, 0.08 U/μl Taq
DNA polymerase (Fermentas), 10% DMSO, and 1× buffer
KCl. The cycling conditions were: 95°C for 3 min, 25
cycles of 93°C for 45 s (denaturation), 53°C for 1 min
(annealing), and 65°C for 8 min (extension), followed by a
final extension at 65°C for 16 min. Genomic fingerprints
were generated and DNA fragments separated in a 1.5%
agarose gel, photographed after ethidium bromide stain-
ing, and the bands visually recorded. GeneRuler 1-kb
DNA Ladder Plus (Fermentas) was used as the molecular
marker.

Different BOX–PCR patterns were assigned to strains
having at least one different band and representative strains
were chosen for 16S rRNA analysis.

16S rRNA gene amplification and sequencing
and phylogenetic relationship

The 16S rRNA gene was amplified by PCR using fD1 (5′-
CCGAATTCGTCGACAACAGAGTTTGATCCTGGCT
CAG-3 ′ ) and rD1 (5 ′ -CCCGGGATCCAAGCT
TAAGGAGGTGATCCAGCC-3′) primers as described by
Versalovic et al. (1991). DNAwas amplified in 25-μl volumes
of PCR reaction mixtures containing 5 μl DNA, 0.5 mM
DNTPs, 1.5 mM MgCl2, 0.5 pmol/ml of each primer, 0.5
U/μL Taq DNA polymerase (Fermentas), and 1×buffer
KCl. DNA was amplified under the following cycling
conditions: an initial denaturation at 93°C for 2 min, 30
cycles of 93°C for 45 s (denaturation), 62°C for 45 s
(annealing), and 72°C for 2 min (extension), with a
final extension at 72°C for 5 min. The PCR product
was cleaned using the AxyPrep PCR Cleanup Kit
(Axygen Scientific) according to the manufacturer’s
instructions and subsequently commercially sequenced
by Macro Gen Inc. (Seoul, Korea).

The sequences of type and reference strains of
related species registered in the National Center for
Biotechnology Information data bank (http://www.
ncbi.nlm.nih.gov) were identified by BLASTN searches
(Altschul et al., 1990) and EzTaxon (Chun et al., 2007).
Phylogenetic analysis was performed by the neighbor
joining (NJ) method (Sai tou and Nei , 1987) ,
and the bootstrap test was calculated for 1,000 subsets
with genetic distances computed with the Kimura’s
two-parameter model using Mega4 software (Tamura et
al. 2007).

Biochemical characterization

The API 50 CHB kit (bioMérieux, Marcy l'Étoile, France)
was used to identify the representatives of each BOX–PCR
profile group. Strains were subcultured onto TGE agar
plates and incubated for 18–24 h at 30°C. The API systems
were inoculated in accordance with the manufacturer’s
instructions and incubated at 30°C for 24 and 48 h. Each
identification system was read following the user guide and
the identity of the microorganism provided for the API web
database system. The results were compared with identifi-
cation by 16S rRNA sequencing.

Results and discussion

The aim of preserving asparagus is to slow down/reduce
microbial growth during the shelf life of the canned product
and reduce the health risk from eating it. The objective of
canning is to destroy harmful microbes present in food;
however, with improper handling, lack of quality control in
the canning process, or a temperature that is too low to
destroy the microbes, contamination and/or spoilage may
result. Some of the Bacillus sp. can be facultative anaerobic
bacteria that develop during the shelf life of the canned
food product. The diversity of the bacteria found in the
asparagus production chain is shown below.

Isolation of spore-forming strains

One hundred and thirty-five strains were isolated during
phase I of this study, of which 110 were isolated from
the soil samples and 25 from the shoots collected
during the harvest. Seventy strains were isolated from
samples of asparagus at different stages of the produc-
tion chain (phase II).

Molecular characterization

BOX–PCR amplification

The fingerprints of 194 isolates were generated by BOX–PCR
amplification (Figs. 1, 2). Since microbial isolates that
showed the same BOX–PCR pattern belong to the same
species, profiles of each strain were grouped by their similar
bands in the fingerprints. According to the molecular results,
there were 13 fingerprint patterns from the 135 strains tested
in phase I; these were denoted strains A to H, respectively,
and are shown in Figs. 1 and 2. In phase II, 59 strains were
selected from 70 spore-forming bacteria isolated at the
processing plant; there were 11 different fingerprint patterns.
The BOX–PCR amplification profiles were the same as
those found in phase I.
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16S rRNA gene amplification and sequencing
and phylogenetic relationship

Strains from every fingerprint pattern group were selected
for further 16S rRNA gene sequencing. Nearly complete
sequences of 16S rRNA genes were obtained and compared
with those held in Genbank, which enabled determination
of the relationship amongst species after construction of a
phylogenetic tree (Fig. 3).

The relatedness of the isolates identified in phase I to
seven species of the family Bacillaceae and one species of
family Paenibacillaceae, all members of class Bacilli and
phylum Firmicutes, was established. The spore-forming
bacteria of genus Bacillus found in this study cause

important problems in the food processing industry due to
the resistance of their endospores, which may be associated
with psychrophilic or acidophilic properties of the vegeta-
tive cells (Andersson et al., 1995). Additionally, some
strains showed BOX–PCR fingerprint patterns (A5 and B)
with high a similarity to more than one species, suggesting
that these strains should be sequenced for other housekeep-
ing genes to determine their identity. The use of protein-
encoding genes as phylogenetic markers is now a common
approach for constructing bacterial phylogenetic relation-
ships (Yamamoto and Harayama 1998; Ko et al. 2004;
Chelo et al. 2007).

A wide diversity of spore-forming microorganisms were
present in the asparagus rhizospheric soil based on the
identification of 110 bacterial strains isolated from samples
collected during the harvest. Based on our results, the
strains belonged to seven Bacillus and one Paenibacillus
species (Table 1), with 30.91% being closely related to B.
subtilis subsp. spizizenii NRRL B-23049T (patterns A1–
A3) with >99.93% similarity. B. tequilensis NRRL B-
41771T (pattern A4) and B. safensis FO-036bT (pattern C)
were identified with 100% similarity in 14.55% of isolates
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Fig. 2 BOX-PCR patterns (D–H) of representative microbial strains
isolated from the asparagus production/processing chain, their
phylogenetic relationship based on 16S rRNA sequencing, and
isolation sources (1 harvest soil, 2 fresh asparagus at harvest, 3 upon

arrival at receiving dock, 4 after washing with water–air sparging, 5
after hydro-cooling, 6 without peeling and cutting, 7 after cutting and
peeling, 8, 9 canned asparagus waiting for thermal processing with a
delay of 1 h (8) or 3 h (9)

Fig. 1 BOX-A1R–based repetitive extragenic palindromic–PCR
(BOX–PCR) patterns (A–C) of representative microbial strains
isolated from the asparagus production/processing chain, their
phylogenetic relationship based on 16S rRNA sequencing, and
isolation sources (1 harvest soil, 2 fresh asparagus at harvest, 3 upon
arrival at receiving dock, 4 after washing with water–air sparging, 5
after hydro-cooling, 6 without peeling and cutting, 7 after cutting and
peeling, 8, 9 canned asparagus waiting for thermal processing with a
delay of 1 h (8) or 3 h (9), 10 spoiled can of a failed sterilization)
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each; meanwhile, 12.73% of strains had 99.93% similarity
with respect to B. licheniformis CP000002T (pattern D).
Then, 11.8% of isolates were associated with Bacillus sp.
included in the same cluster of species as B. tequilensis and
B. subtilis subsp. inaquosorum (pattern A5) (Fig. 3). Strains
closely related to B. aryabhattai B8W22T (patterns E1–E2(
(>99.87% similarity), B. anthracis ATCC 14578T (pattern
F) (100% similarity), and strains included in the same
cluster of species B. subtilis subsp. subtilis, B. vallismortis,
B. amyloliquefaciens subsp. plantarum and B. methylotro-
phicus (pattern B) as well as Bacillus sp. strains related
with 99.44% similarity to B. endophyticus 2DTT (pattern G)
were present in fewer than 8.18% of the tested isolates. The
remaining 2.73% of strains were closely related to P.
peoriae DSM 8320T (pattern H) with 99.72 % similarity.
Based on their results from rhizosphere studies, Garbeva et
al. (2008) reported the isolation of 11 and seven different
Bacillus species from maize and barley, respectively, based

on the development of a 16S rRNA clone library. On the
other hand, Paenibacillus peoriae (previously Bacillus
peoriae) was first isolated from soil (Montefusco et al.
1993) and has been associated with the production of
antimicrobial substances, a capability for molecular nitro-
gen fixation, and the production of chitinases and proteases.
However, other Paenibacillus species have been related to
contamination of food products, including pasteurized
pureed vegetables (Berge et al. 2002). The genetic diversity
of this family has also been studied by rep-PCR (Loncaric
et al. 2009) and found to be a reliable tool for establishing
phylogenetic relationships.

Fresh asparagus at harvest, which were initially
contaminated through the soil in which they grew, had
the same Bacillus species than the soil samples. Of the 25
isolates, 32% were closely related to B. licheniformis
ATCC 14580T with 99.93% similarity; 24% to B. subtilis
subsp. spizizenii NRRL B-23049T with >99.93% similar-
ity; 20% to B. safensis FO-036bT with 100% similarity.
Moreover, 16% of strains were associated as Bacillus sp.
included in the same cluster of species as B. subtilis subsp.
subtilis, B. vallismortis, B. amyloliquefaciens subsp.
plantarum, and B. methylotrophicus (pattern B). Addi-
tionally, 8% were associated with Bacillus sp. included in

Table 1 Molecular characteristics and phylogenetic classification of the bacteria strains from the asparagus processing/production chain isolated
in this study

16S rRNA gene
sequenced strains

BOX–PCR
pattern

Closest related type strains
based on 16S rRNA gene

Accession numbers
of the closest type strains

Similarity (%)

2M2CE A1 Bacillus subtilis subsp. spizizenii
NRRL B-23049T

AF074970 99.93

M1BE30, M1BE15, M3BE11, M2BE30 A2 B. subtilis subsp. spizizenii NRRL
B-23049T

AF074970 100.00

M3BE18 A3 B. subtilis subsp. spizizenii NRRL
B-23049T

AF074970 100.00

M2BE52, M2BE35, M2BE47,
M2BE61, M3BE27

A4 B. tequilensis NRRL B-41771T EU138487 100.00

M2BE4, M1BE8, M2BE28 A5 B. tequilensis 10bT HQ223107 99.93

B. subtilis subsp. inaquosorum
BGSC 3A28T

EU138467 99.91

M1BE28, M2BE48, M1BE21 B B. subtilis subsp. subtilis NCIB 3610T ABQL01000001 99.80

B. vallismortis DSM 11031T AB021198 99.73

B. amyloliquefaciens subsp.
plantarum FZB42T

CP000560 99.73

B. methylotrophicus CBMB205T EU194897 99.72

M3BE13, M1BE12, M2BE42, 2M3BE12 C B. safensis FO-036bT AF234854 100.00

M2BE13, M3BE5, 2M3BE23 D B. licheniformis ATCC 14580T CP000002 99.93

M3BE14, M1BE10 E1 B. aryabhattai B8W22T EF114313 99.87

M3BE2, M2BE18 E2 B. aryabhattai B8W22T EF114313 99.93

M3BE15 F B. anthracis ATCC 14578T AB190217 100.00

M2BE6 G B. endophyticus 2DTT AF295302 99.44

M1BE3, M2BE3 H Paenibacillus peoriae DSM 8320T AJ320494 99.72

BOX–PCR, BOX-A1R–based repetitive extragenic palindromic-PCR

Fig. 3 Neighbor-joining tree showing the taxonomic location of a
representative from each BOX–PCR group based on 16S rRNA
sequences. Strains (in bold) were isolated from the white asparagus
production/processing chain grown in northern Peru. Reference strains
are also indicated. The significance of each branch is indicated by a
bootstrap value calculated for 1,000 subsets. Scale bar: 2% of
sequence divergence [2 nucleotides (nt) substitution per 100 nt]
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the same cluster of B. tequilensis and B. subtilis subsp.
inaquosorum (pattern A5).

In phase II, the taxonomic position of spore-forming
bacteria isolated from the asparagus production/processing
chain was also elucidated by 16S rRNA sequence analysis.
Both B. safensis FO-036bT (100% similarity) and B. subtilis
subsp. spizizenii NRRL B-23049T (>99.93 similarity) were
the most frequent closely related type strains associated to
isolates from this phase (27.14% each). Paenibacillus
species and Bacillus sp. strains related to B. endophyticus
2DTT with BOX–PCR pattern G, both present in phase I
samples, were absent in phase II samples (Fig. 4). In
addition, B. anthracis only was present in small quantities
until upon arrival at the receiving dock in the processing
plant.

An acidic (pH 5.3) standard liquid (water, salt, organic
acids, and probably additives) was added the canned white
asparagus tested in our study, and it is therefore necessary

to develop a thermal treatment to destroy surviving micro-
organisms. Microbial assays and molecular characterization
of the isolated strains from the canned asparagus before the
thermal process with a delay of 1 and 3 h showed that
>80.00% of spore-forming microorganisms found at those
critical points in the processing chain (stages 8 and 9 of the
production chain in Fig. 4) were closely related to B.
subtilis subsp. spizizenii NRRL B-23049T with >99.93%
similarity (38.10% of isolates), B. safensis FO-036bT with
100% similarity (28.57% of strains), and B. licheniformis
ATCC 14580T with 99.93% similarity (14.29%); all of
these strains are members of the B. subtilis group. The
washing, peeling and bleaching procedures and and the low
pH of the canned asparagus are sufficiently efficient
measures to destroy these microbes (Fig. 4). The all other
phylogenetically related species found in soil samples were
also present in the canned asparagus but in considerably
smaller numbers; the exceptions were strains related to B.
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Fig. 4 Diversity of spore-
forming bacteria along the pro-
duction/processing chain of
canned white asparagus according
to stages of the production: 1
harvest soil, 2 fresh asparagus
at harvest, 3 upon arrival at
receiving dock, 4 after washing
with water–air sparging, 5
after hydro-cooling, 6 without
peeling and cutting, 7 after
cutting and peeling, 8, 9 canned
asparagus waiting for thermal
processing with a delay of 1 h (8)
or 3 h (9). Percentages are
given based on the total number
of spore-forming bacteria
molecularly characterized in
this work
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anthracis ATCC 14578T, Bacillus sp. related to B.
endophyticus, and P. peoriae DSM 8320T, which were
absent (Fig. 4).

During the course of this study it was possible to
obtained a spoiled can of white asparagus due to a failed
thermal treatment. This can was tested for microbial growth
according to BAM–FDA guidelines (U.S. Federal Drug
Administration 2001), and one strain was isolated. A
99.93% similarity between this strain (2M2CE) and the
type strain of B. subtilis subsp. spizizenii NRRL B-23049T

was established (Fig. 3). Previous studies by Kotzekidou
(1996) revealed the presence of B. subtilis as the most
frequent microorganism in spoiled canned foods, often in
the presence of B. megaterium, B. brevis, and B. pumilus.
These microorganisms are also common in other kind of
foods, with B. subtilis, B. pumilus, and B. licheniformis, all
members of the B. subtilis group, generally constituting the
predominant mesophilic spore-forming species in raw milk
(Scheldeman et al. 2005).

After B. cereus, B. subtilis, is the most common
microbial species associated with food contamination, often
meat, pastries, and rice dishes with meat or seafood. It has
been reported that when present in numbers of more than
105 cfu/g, this species can cause diseases (Lund 1990;
Granum and Baird-Parker, 2000), with patients’ symptoms
generally consisting of vomiting after a short incubation
period (Lund 1990; Jenson and Moir 2003). B. subtilis
spores are notoriously difficult to denature, and they can
survive moist heat (100°C at atmospheric pressure) with a

D value (decimal reduction time—the time required to
lower viability by a factor of 10) of 20–30 min. Moreover,
spores survive approximately 1000-fold longer in dry heat
than in moist heat (Fox and Eder 1969; Nicholson et al.
2000). Because of their high thermal resistance, Bacillus
species have used as indicators in thermal process designs
and have served as experimental models for exploring the
molecular mechanisms underlying the incredible longevity
of spores and their resistance to environmental insults
(Nicholson et al. 2000).

Biochemical characterization

Using the biochemical assay API 50 CHB, we explored the
phylogenetic relationship of the isolated strains (Table 2).
Seventeen strains with diverse BOX–PCR patterns were
tested, and although there were no general similarities
between the identities based on the molecular assays and
those based on biochemical methods, the characterization
was understandable. Biochemical analysis confirmed the
phylogenetic relationship of strains with BOX–PCR pattern
D, and B. licheniformis was identified with >99.8% ID.
Similarly, both methods revealed the identity of B.
anthracis for strains with BOX-PCR pattern F.

Molecular techniques such as 16S rRNA sequencing
analysis require a large and very up-to-date genetic
sequence database of prokaryotic strains, such as
GenBank® or EzTaxon, against which the sequence of an
unknown strain can be compared. However, the API system

Table 2 Bacillus sp. identifica-
tion by molecular and biochemical
methods

Code Molecular characterization Biochemical characterization

BOX–PCR pattern Best match Taxa % ID

2M1BE6 D B. licheniformis B. licheniformis 99.9

2M2BE4 A1 B. subtilis subsp.spizizenii B. subtilis / amyloliquefaciens 99.5

3MBE131 A1 B. subtilis subsp. spizizenii B. subtilis / amyloliquefaciens 97.3

2M2BE41 A1 B. subtilis subsp. spizizenii B. subtilis / amyloliquefaciens 89.5

2M2BE29 A5 Bacillus sp. B. licheniformis 53.2

B. subtilis / amyloliquefaciens 34.6

3MBE122 A5 Bacillus sp. B. subtilis / amyloliquefaciens 88.1

3MBE104 E2 Bacillus aryabhattai B. megaterium 99.9

2M2BE5 C Bacillus safensis B. pumilus 99.9

2M2BE6 C Bacillus safensis B. pumilus 99.9

3MBE176 C Bacillus safensis B. pumilus 99.9

3MBE204 C Bacillus safensis B. pumilus 99.9

3MBE213 C Bacillus safensis B. pumilus 99.9

3MBE217 C Bacillus safensis B. pumilus 99.9

3MBE228 D B. licheniformis B. licheniformis 99.8

3MBE222 E2 Bacillus aryabhattai B. megaterium 97.9

3MBE134 E2 Bacillus aryabhattai B. megaterium 99.9

3MBE174 F Bacillus anthracis B. anthracis 79.6
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has a limited database that contains no more than 29 species
and strains; B. subtilis subsp. spizizenii (BOX–PCR pattern
A1), B. safensis (BOX–PCR pattern C), or B. aryabhattai
(pattern E2) are not included in its database. Thereby, when
each of these strains was tested by API, they were
associated to B. subtilis/amyloliquefaciens, B. pumilus,
and B. megaterium. Although there was no correspondence
between species, the strains were clustered together and
belong to the same group. Thus, B. subtilis subsp. spizizenii
and B. subtilis/amyloliquefaciens are close members of the
B. subtilis group, B. safensis and B. pumilus show a high
similarity and also belong to the B. subtilis group, while B.
aryabhattai and B. megaterium are in the same B.
megaterium group (Table 2).

Additionally, none of the methods could identify strains
with BOX–PCR pattern A5 and other methods may be
required.

Although a diversity of spore-forming microorgan-
isms were found in the cultured soil where the
asparagus grew, most decreased in numbers during the
production process; the remaining microorganisms were
members of the B. subtilis group (as B. subtilis subsp.
spizizenii, B. tequilensis, B. safensis, and B. licheniformis)
and B. megaterium group (as B. aryabhattai). Based on
these results, we suggest that the resistance of the spores
of these microorganisms as well as the resistance of spore-
forming pathogenic bacteria should be considered in the
design of thermal treatments to guarantee the quality and
sterility of the end product.
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