Skip to main content
Log in

Electrochemiluminescent Chemosensors for Clinical Applications: A Review

  • Review Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Economic development has raised concerns about human healthcare and disease prevention from its early stages. In that regard, the detection of biomarkers is crucial for early diagnosis of diseases, and it is an essential tool for managing various health conditions. The clinical diagnostics industry is worth hundreds of billions of dollars and has been expanding. However, the traditional methods for biomarkers detection are high-cost and time-consuming. Also, they usually require highly trained personnel and complex instrumental processes, only providing a centralized medical diagnosis system in large hospitals or specialized facilities. In contrast, a chemosensor is a smart molecular analytical device designed to sense an analyte to generate a detectable signal and to offer direct diagnosis without complex instruments or systems. Moreover, electrochemiluminescence (ECL) possesses distinct advantages such as low-costs, simplicity, and portability. ECL has become a useful technique and has been widely applied in many fields, from basic research to practical applications. Chemosensors coupled with ECL can provide compelling advantages over conventional approaches, such as rapid response time, higher sensitivity, and selectivity. This minireview aims to highlight recent representative studies on ECL-based chemosensors for clinical applications. It provides a general overview of the design and structure of ECL-based chemosensors, and also covers the general problems and challenges. The presented content may prove to be useful for discovering new sensor concepts or extension of existing biomarker detection strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table 1.
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  1. Patil, A. & Salunke-Gawali, S. Overview of the chemosensor ligands used for selective detection of anions and metal ions (Zn2+, Cu2+, Ni22+, Co2+, Fe2+, Hg2+). Inorg. Chim. Acta 482, 99–112 (2018).

    Article  CAS  Google Scholar 

  2. Czarnik, A.W. Chemical Communication in Water Using Fluorescent Chemosensors. Acc. Chem. Res. 27, 302–308 (1994).

    Article  CAS  Google Scholar 

  3. Czarnik, A.W. Supramolecular Chemistry, Fluorescence, and Sensing. in Fluoresc. Chemosens. Ion Mol. Recognit. (ed. Czarnik, A.W.) 1–9 (American Chemical Society, Washington, DC, 1993).

    Chapter  Google Scholar 

  4. Parkesh, R., Veale, E.B. & Gunnlaugsson, T. Fluorescent Detection Principles and Strategies. in Chemosensors 229–252 (John Wiley & Sons, Inc., Hoboken, NJ, USA, 2011).

    Chapter  Google Scholar 

  5. Huston, M.E., Haider, K.W. & Czarnik, A.W. Chelation enhanced fluorescence in 9,10-bis[[(2-(dimethylamino) ethyl)methylamino]methyl]anthracene. J. Am. Chem. Soc. 110, 4460–4462 (1988).

    Article  CAS  Google Scholar 

  6. Huston, M.E., Engleman, C. & Czarnik, A.W. Chelatoselective fluorescence perturbation in anthrylazamacrocycle conjugate probes. Electrophilic aromatic cadmiation. J. Am. Chem. Soc. 112, 7054–7056 (1990).

    Article  CAS  Google Scholar 

  7. Akkaya, E.U., Huston, M.E. & Czarnik, A.W. Chelation-Enhanced Fluorescence of Anthrylazamacrocycle Conjugate Probes in Aqueous Solution. J. Am. Chem. Soc. 112, 3590–3593 (1990).

    Article  CAS  Google Scholar 

  8. de Silva, A.P. & de Silva, S.A. Fluorescent signalling crown ethers; ‘switching on’ of fluorescence by alkali metal ion recognition and binding in situ. J. Chem. Soc., Chem. Commun. 1709–1710 (1986).

    Google Scholar 

  9. Bryan, A.J., de Silva, A.P., De Silva, S.A., Rupasinghe, R.A.D.D. & Sandanayake, K.R.A.S. Photoinduced electron transfer as a general design logic for fluorescent molecular sensors for cations. Biosensors 4, 169–179 (1989).

    Article  CAS  Google Scholar 

  10. de Silva, A.P., Gunaratne, H.Q.N., Gunnlaugsson, T. & Nieuwenhuizen, M. Fluorescent switches with high selectivity towards sodium ions: correlation of ion-induced conformation switching with fluorescence function. Chem. Commun. 16, 1967–1968 (1996).

    Article  Google Scholar 

  11. Minta, A. & Tsien, R.Y. Fluorescent indicators for cytosolic sodium. J. Biol. Chem. 264, 19449–19457 (1989).

    Article  CAS  PubMed  Google Scholar 

  12. Minta, A., Kao, J.P. & Tsien, R.Y. Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J. Biol. Chem. 264, 8171–8178 (1989).

    Article  CAS  PubMed  Google Scholar 

  13. Sousa, L.R. & Larson, J.M. Crown ether model systems for the study of photoexcited state response to geometrically oriented perturbers. The effect of alkali metal ions on emission from naphthalene derivatives. J. Am. Chem. Soc. 99, 307–310 (1977).

    Article  CAS  Google Scholar 

  14. Fang, H., Kaur, G. & Wang, B. Progress in Boronic Acid-Based Fluorescent Glucose Sensors. J. Fluoresc. 14, 481–489 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Dabrowski, M., Sharma, P.S., Iskierko, Z., Noworyta, K., Cieplak, M., Lisowski, W., Oborska, S., Kuhn, A. & Kutner, W. Early diagnosis of fungal infections using piezomicrogravimetric and electric chemosensors based on polymers molecularly imprinted with d-arabitol. Biosens. Bioelectron. 79, 627–635 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Peng, H., Chen, W., Cheng, Y., Hakuna, L., Strongin, R. & Wang, B. Thiol Reactive Probes and Chemosensors. Sensors 12, 15907–15946 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pina Luis, G., Granda, M., Granda, M., Badía, R. & Díaz-García, M.E. Selective fluorescent chemosensor for fructose. Analyst 123, 155–158 (1998).

    Article  Google Scholar 

  18. Cozzini, P., Ingletto, G., Singh, R. & Dall’Asta, C. Mycotoxin Detection Plays “Cops and Robbers”: Cyclodextrin Chemosensors as Specialized Police? Int. J. Mol. Sci. 9, 2474–2494 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu, Y., Niu, X., Zhang H., Xu, L., Zhao, S., Chen. H. & Chen, X. Switch-on Fluorescence Sensing of Glutathione in Food Samples Based on a Graphitic Carbon Nitride Quantum Dot (g-CNQD)-Hg2+ Chemosensor. J. Agric. Food Chem. 63, 1747–1755 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Lee, M.H., Wu, J.S., Lee, J.W., Jung, J.H. & Kim, J. S. Highly Sensitive and Selective Chemosensor for Hg2+ Based on the Rhodamine Fluorophore. Org. Lett. 9, 2501–2504 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Jung, J.H., Lee, J.H. & Shinkai, S. Functionalized magnetic nanoparticles as chemosensors and adsorbents for toxic metal ions in environmental and biological fields. Chem. Soc. Rev. 40, 4464–4474 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Guo, Z., Song, N.R., Moon, J.H., Kim, M., Jun, E.J., Choi, J., Lee, J.Y., Bielawski, C.W., Sessler, J.L. & Yoon, J. A Benzobisimidazolium-Based Fluorescent and Colorimetric Chemosensor for CO2. J. Am. Chem. Soc. 134, 17846–17849 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Wang, B. & Anslyn, E. Detection Methods in Chemosensing. in Chemosens. Princ. Strateg. Appl. 227–228 (Hoboken, NJ, USA, 2011).

    Chapter  Google Scholar 

  24. de Silva, A.P., Gunaratne, H.Q., Gunnlaugsson, T., Huxley, A.J., McCoy, C.P., Rademacher, J.T. & Rice, T.E. Signaling Recognition Events with Fluorescent Sensors and Switches. Chem. Rev. 97, 1515–1566 (1997).

    Article  PubMed  Google Scholar 

  25. Kim, J.S. & Duong, T.Q. Calixarene-Derived Fluorescent Probes. Chem. Rev. 107, 3780–3799 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Rogers, C.W. & Wolf, M.O. Luminescent molecular sensors based on analyte coordination to transition-metal complexes. Coord. Chem. Rev. 233-234, 341–350 (2002).

    Article  Google Scholar 

  27. Chen, X., Pradhan, T., Wang, F., Kim, J.S. & Yoon, J. Fluorescent Chemosensors Based on Spiroring-Opening of Xanthenes and Related Derivatives. Chem. Rev. 112, 1910–1956 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Ma, Y., Liang, H., Zeng, Y., Yang, H., Ho, C.-L., Xu, W., Zhao, Q., Huang, H. & Wong, W.-Y. Phosphorescent soft salt for ratiometric and lifetime imaging of intracellular pH variations. Chem. Sci. 7, 3338–3346 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Richter, M.M. Electrochemiluminescence (ECL). Chem. Rev. 104, 3003–3036 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Hercules, D.M. Chemiluminescence Resulting from Electrochemically Generated Species. Science 145, 808–809 (1964).

    Article  CAS  PubMed  Google Scholar 

  31. Visco, R.E. & Chandross, E.A. Electroluminescence in Solutions of Aromatic Hydrocarbons. J. Am. Chem. Soc. 86, 5350–5351 (1964).

    Article  CAS  Google Scholar 

  32. Santhanam, K.S.V. & Bard, A.J. Chemiluminescence of Electrogenerated 9,10-Diphenylanthracene Anion Radical. J. Am. Chem. Soc. 87, 139–140 (1965).

    Article  CAS  Google Scholar 

  33. Miao, W. Electrogenerated Chemiluminescence and Its Biorelated Applications. Chem. Rev. 108, 2506–2553 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Kim, T.I., Park, S., Choi, Y. & Kim, Y. A BODIPY-Based Probe for the Selective Detection of Hypochlorous Acid in Living Cells. Chem. Asian J. 6, 1358–1361 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Li, J., Li, X., Zhang, Y., Li, R., Wu, D., Du, B., Zhang, Y., Ma, H. & Wei, Q. Electrochemiluminescence sensor based on cationic polythiophene derivative and NH2 —graphene for dopamine detection. RSC Adv. 5, 5432–5437 (2015).

    Article  CAS  Google Scholar 

  36. Zheng, Z.-B., Duan, Z.-M., Ma, Y.-Y. & Wang, K.-Z. Highly Sensitive and Selective Difunctional Ruthenium(II) Complex-Based Chemosensor for Dihydrogen Phosphate Anion and Ferrous Cation. Inorg. Chem. 52, 2306–2316 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Kim, H.J., Lee, K.-S., Jeon, Y.-J., Shin, I.-S. & Hong, J.-I. Electrochemiluminescent chemodosimeter based on iridium(III) complex for point-of-care detection of homocysteine levels. Biosens. Bioelectron. 91, 497–503 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Tang, Y., Xu, J., Xiong, C., Xiao, Y., Zhang, X. & Wang S. Enhanced electrochemiluminescence of gold nanoclusters via silver doping and their application for ultrasensitive detection of dopamine. Analyst 144, 2643–2648 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Zhu, X., Kou, F., Xu, H. & Yang, G.A rapid and sensitive electrochemiluminescent sensor for nitrites based on C3N4 quantum dots on C3N4 nanosheets. RSC Adv. 6, 105331–105337 (2016).

    Article  CAS  Google Scholar 

  40. Bard, A.J. Electrogenerated chemiluminescence. (Marcel Dekker, New York, 2004).

    Book  Google Scholar 

  41. Bard, A.J. & Faulkner, L.R. Electrochemical methods: fundamentals and applications. (Wiley, 2000).

    Google Scholar 

  42. Strimbu, K. & Tavel, J.A. What are biomarkers? Curr. Opin. HIV AIDS 5, 463–466 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nimse, S.B., Sonawane, M.D., Song, K.-S. & Kim, T. Biomarker detection technologies and future directions. Analyst 141, 740–755 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Swierczewska, M., Liu, G., Lee, S. & Chen, X. High-sensitivity nanosensors for biomarker detection. Chem. Soc. Rev. 41, 2641–2655 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Wu, L. & Qu, X. Cancer biomarker detection: recent achievements and challenges. Chem. Soc. Rev. 44, 2963–2997 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Rezaei, B., Ghani, M., Shoushtari, A.M. & Rabiee, M. Electrochemical biosensors based on nanofibres for cardiac biomarker detection: A comprehensive review. Biosens. Bioelectron. 78, 513–523 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Shui, B., Tao, D., Florea, A., Cheng, J., Zhao, Q., Gu, Y., Li, W., Jaffrezic-Renault, N., Mei, Y. & Guo, Z. Biosensors for Alzheimer’s disease biomarker detection: A review. Biochimie 147, 13–24 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Sun, J., Sun, H. & Liang, Z. Nanomaterials in Electrochemiluminescence Sensors. ChemElectroChem 4, 1651–1662 (2017).

    Article  CAS  Google Scholar 

  49. Xu, Y., Liu, J., Gao, C. & Wang, E. Applications of carbon quantum dots in electrochemiluminescence: A mini review. Electrochem. commun. 48, 151–154 (2014).

    Article  CAS  Google Scholar 

  50. Wei, H. & Wang, E. Electrochemiluminescence of tris(2,2′-bipyridyl)ruthenium and its applications in bioanalysis: a review. Luminescence 26, 77–85 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. LI, S.-P., GUAN, H.-M., XU, G.-B. & TONG, Y.-J. Progress in Molecular Imprinting Electrochemiluminescence Analysis. Chin. J. Anal. Chem. 43, 294–299 (2015).

    Article  CAS  Google Scholar 

  52. Liu, Z., Qi, W. & Xu, G. Recent advances in electrochemiluminescence. Chem. Soc. Rev. 44, 3117–3142 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Li, L., Chen, Y. & Zhu, J.-J. Recent Advances in Electrochemiluminescence Analysis. Anal. Chem. 89, 358–371 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Seshadri, S., Beiser, A., Selhub, J., Jacques, P.F., Rosenberg, I.H., D’Agostino, R.B., Wilson, P.W. & Wolf, P.A. Plasma Homocysteine as a Risk Factor for Dementia and Alzheimer’s Disease. N. Engl. J. Med. 346, 476–483 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Jakubowski, H., Ambrosius, W.T. & Pratt, J.H. Genetic determinants of homocysteine thiolactonase activity in humans: implications for atherosclerosis. FEBS Lett. 491, 35–39 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Matsuyama, N., Yamaguchi, M., Toyosato, M., Takayama, M. & Mizuno, K. New enzymatic colorimetric assay for total homocysteine. Clin. Chem. 47, 2155–2157 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Stewart, A.J., Brown, K. & Dennany, L. Cathodic Quantum Dot Facilitated Electrochemiluminescent Detection in Blood. Anal. Chem. 90, 12944–12950 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Slivka, A. & Cohen, G. Brain ischemia markedly elevates levels of the neurotoxic amino acid, cysteine. Brain Res. 608, 33–37 (1993).

    Article  CAS  PubMed  Google Scholar 

  59. Choi, Y.W., Lee, J.J., You, G.R. & Kim, C. Fluorescence ’on-off-on’ chemosensor for the sequential recognition of Hg2+ and cysteine in water. RSC Adv. 5, 38308–38315 (2015).

    Article  CAS  Google Scholar 

  60. Shahrokhian, S. Lead Phthalocyanine as a Selective Carrier for Preparation of a Cysteine-Selective Electrode. Anal. Chem. 82, 5972–5978 (2001).

    Article  CAS  Google Scholar 

  61. Xie, H., Li, X., Zhao, L., Han, L., Zhao, W. & Chen, X. Electrochemiluminescence performance of nitroolefin-based fluorescein in different solutions and its application for the detection of cysteine. Sens. Actuators, B 222, 226–231 (2016).

    Article  CAS  Google Scholar 

  62. Kim, T. & Hong, J.-I. Photoluminescence and Electrochemiluminescence Dual-Signaling Sensors for Selective Detection of Cysteine Based on Iridium (III) Complexes. ACS Omega 4, 12616–12625 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhu, R., Zhang, Y., Fang, X., Cui, X., Wang, J., Yue, C., Fang, W., Zhao, H. & Li, Z. In situ sulfur-doped graphitic carbon nitride nanosheets with enhanced electrogenerated chemiluminescence used for sensitive and selective sensing of l -cysteine. J. Mater. Chem. B 7, 2320–2329 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Townsend, D.M., Tew, K.D. & Tapiero, H. The importance of glutathione in human disease. Biomed. Pharmacother. 57, 145–155 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Niu, L.-Y., Guan, Y.-S., Chen, Y.-Z., Wu, L-Z., Tung, C.-H. & Yang, Q.-Z. BODIPY-Based Ratiometric Fluorescent Sensor for Highly Selective Detection of Glutathione over Cysteine and Homocysteine. J. Am. Chem. Soc 134, 18928–18931 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Niu, W.-J., Zhu, R.-H., Cosnier, S., Zhang, X.-J. & Shan, D. Ferrocyanide-Ferricyanide Redox Couple Induced Electrochemiluminescence Amplification of Carbon Dots for Ultrasensitive Sensing of Glutathione. Anal. Chem. 87, 11150–11156 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Salamon, J., Sathiskumar, Y., Ramachandran, K., Lee, Y.S., Yoo, D.J., Kim, A.R. & Gnana Kumar, G. One-pot synthesis of magnetite nanorods/graphene composites and its catalytic activity toward electrochemical detection of dopamine. Biosens. Bioelectron. 64, 269–276 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Martorana, A. & Koch, G. ‘Is dopamine involved in Alzheimer’s disease?’ Front. Aging Neurosci. 6, 252 (2014).

    PubMed  PubMed Central  Google Scholar 

  69. Triarhou, L.C. Dopamine and Parkinson’s Disease. (2013).

    Google Scholar 

  70. Xu, G., Jarjes, Z. A., Desprez, V., Kilmartin, P. A. & Travas-Sejdic, J. Sensitive, selective, disposable electrochemical dopamine sensor based on PEDOT-modified laser scribed graphene. Biosens. Bioelectron. 107, 184–191 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Wang, F., Lin, J., Wang, H., Yu, S., Cui, X., Ali, A., Wu, T. & Liu, Y. Precise mono-Cu+ ion doping enhanced electrogenerated chemiluminescence from Cd-In-S supertetrahedral chalcogenide nanoclusters for dopamine detection. Nanoscale 10, 15932–15937 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. Liu, S., Zhang, X., Yu, Y. & Zou, G. A Monochromatic Electrochemiluminescence Sensing Strategy for Dopamine with Dual-Stabilizers-Capped CdSe Quantum Dots as Emitters. Anal. Chem. 86, 2784–2788 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Suk, J. & Bard, A.J. Electrochemistry and electrogenerated chemiluminescence of organic nanoparticles. J. Solid State Electrochem. 15, 2279–2291 (2011).

    Article  CAS  Google Scholar 

  74. Feng, Y., Dai, C., Lei, J., Ju, H. & Cheng, Y. Silole-Containing Polymer Nanodot: An Aqueous Low-Potential Electrochemiluminescence Emitter for Biosensing. Anal. Chem. 88, 845–850 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Omer, K.M., Ku, S.-Y., Cheng, J.-Z., Chou, S.-H., Wong, K.-T. & Bard, A.J. Electrochemistry and Electrogenerated Chemiluminescence of a Spirobifluorene-Based Donor (Triphenylamine)-Acceptor (2,1,3-Benzothiadiazole) Molecule and Its Organic Nanoparticles. J. Am. Chem. Soc. 133, 5492–5499 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Li, H. Wang, Y., Ye, D., Luo, J., Su, B., Zhang, S. & Kong, J. An electrochemical sensor for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan based on MWNTs bridged mesocellular graphene foam nanocomposite. Talanta 127, 255–261 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Keyvanfard, M., Shakeri, R., Karimi-Maleh, H. & Alizad, K. Highly selective and sensitive voltammetric sensor based on modified multiwall carbon nanotube paste electrode for simultaneous determination of ascorbic acid, acetaminophen and tryptophan. Mater. Sci. Eng. C 33, 811–816 (2013).

    Article  CAS  Google Scholar 

  78. Yokuş, Ö.A., Kardaş, F., Akyıldırım, O., Eren, T., Atar, N. & Yola, M.L. Sensitive voltammetric sensor based on polyoxometalate/reduced graphene oxide nanomaterial: Application to the simultaneous determination of l-tyrosine and l-tryptophan. Sens. Actuators, B 233, 47–54 (2016).

    Article  CAS  Google Scholar 

  79. Chen, K. & Schmittel, M. An iridium(iii)-based labon-a-molecule for cysteine/homocysteine and tryptophan using triple-channel interrogation. Analyst 138, 6742–6745 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Shen, R., Zou, L., Wu, S., Li, T., Wang, J., Liu, J. & Ling, L. A novel label-free fluorescent detection of histidine based upon Cu2+-specific DNAzyme and hybridization chain reaction. Spectrochim. Acta, Part A 213, 42–47 (2019).

    Article  CAS  Google Scholar 

  81. Watanabe, M., Suliman, M.E., Qureshi, A.R., Garcica-Lopez, E., Bárány, P., Heimbürger, O., Stenvinkel, P. & Lindholm, B. Consequences of low plasma histidine in chronic kidney disease patients: associations with inflammation, oxidative stress, and mortality. Am. J. Clin. Nutr. 87, 1860–1866 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Zhou, Y., Xie, K., Kong, L., Chen, F. & Sun, D. Highly selective Electrochemiluminescent probe to histidine. J. Electroanal. Chem. 799, 122–125 (2017).

    Article  CAS  Google Scholar 

  83. Eto, K., Asada, T., Arima, K., Makifuchi, T. & Kimura, H. Brain hydrogen sulfide is severely decreased in Alzheimer’s disease. Biochem. Biophys. Res. Commun. 293, 1485–1488 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Papapetropoulos, A., Pyriochou, A., Altaany, Z., Yang, G., Marazioti, A., Zhou, Z., Jeschke, M.G., Branski, L.K., Herndon, D.N., Wang, R. & Szabó, C. Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc. Natl. Acad. Sci. U.S.A. 106, 21972–21977 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Park, J., Kim, T., Kim, H.J. & Hong, J.-I. Iridium (iii) complex-based electrochemiluminescent probe for H2S. Dalton Trans. 48, 4565–4573 (2019).

    Article  CAS  PubMed  Google Scholar 

  86. Zu, Y. & Bard, A.J. Electrogenerated Chemiluminescence. 66. The Role of Direct Coreactant Oxidation in the Ruthenium Tris(2,2’)bipyridyl/Tripropylamine System and the Effect of Halide Ions on the Emission Intensity. Anal. Chem. 72, 3223–3232 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Kim, S.-Y., Kim, H.J. & Hong, J.-I. Electrochemiluminescent chemodosimetric probes for sulfide based on cyclometalated Ir(iii) complexes. RSC Adv. 7, 10865–10868 (2017).

    Article  CAS  Google Scholar 

  88. Xu, Q., Lee, K.A., Lee, S., Lee, K.M., Lee, W.J. & Yoon, J. A Highly Specific Fluorescent Probe for Hypochlorous Acid and Its Application in Imaging Microbe-Induced HOCl Production. J. Am. Chem. Soc. 135, 9944–9949 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Cao, L., Zhang, R., Zhang, W., Du, Z., Lium C., Ye, Z., Song, B. & Yuan, J. A ruthenium(II) complex-based lysosome-targetable multisignal chemosensor for in vivo detection of hypochlorous acid. Biomaterials 68, 21–31 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Zhang, F., Liang, X., Zhang, W., Wang, Y.L., Wang, H., Mohammed, Y.H., Song, B., Zhang, R. & Yuan, J. A unique iridium(III) complex-based chemosensor for multi-signal detection and multi-channel imaging of hypochlorous acid in liver injury. Biosens. Bioelectron. 87, 1005–1011 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Long, B.M., Pfeffer, F.M. & Barrow, C.J. Colorimetric semi-quantitative measurement of pyrophosphate by functionalised SPPS resin in biological media. Sens Actuators, B 243, 761–764 (2017).

    Article  CAS  Google Scholar 

  92. Yang, J., Acharya, R., Zhu, X., Köse, M.E. & Schanze, K.S. Pyrophosphate Sensor Based on Principal Component Analysis of Conjugated Polyelectrolyte Fluorescence. ACS Omega 1, 648–655 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shin, I.-S., Bae, S.W., Kim, H. & Hong, J.-I. Electrogenerated Chemiluminescent Anion Sensing: Selective Recognition and Sensing of Pyrophosphate. Anal. Chem. 82, 8259–8265 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Xu, H., Zhu, X., Dong, Y., Wu, H., Chen, Y. & Chi, Y. Highly sensitive electrochemiluminescent sensing platform based on graphite carbon nitride nanosheets for detection of pyrophosphate ion in the synovial fluid. Sens Actuators, B 236, 8–15 (2016).

    Article  CAS  Google Scholar 

  95. Kundu, A., Nandi, S., Layek, R.K. & Nandi, A.K. Fluorescence Resonance Energy Transfer from Sulfonated Graphene to Riboflavin: A Simple Way to Detect Vitamin B2. ACS Appl. Mater. Interfaces 5, 7392–7399 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Powers, H.J. Riboflavin (vitamin B-2) and health. Am. J. Clin. Nutr. 77, 1352–1360 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Wang, H. Ma, Q., Wang, Y., Wang, C., Qin, D., Shan, D., Chen, J. & Lu, X. Resonance energy transfer based electrochemiluminescence and fluorescence sensing of riboflavin using graphitic carbon nitride quantum dots. Anal. Chim. Acta 973, 34–42 (2017).

    Article  CAS  PubMed  Google Scholar 

  98. Fähnrich, K.A., Pravda, M. & Guilbault, G.G. Recent applications of electrogenerated chemiluminescence in chemical analysis. Talanta 54, 531–559 (2001).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Technology Innovation Program (10077599 and 1007 7648) funded by the Ministry of Trade, Industry & Energy, Korea. It was also supported by the Basic Science Research Program (NRF-2017R1D1A1B03028668) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE), and by Original Technology Research Program for Brain Science (NRF-2017M3A9D8029943) funded by Ministry of Science, ICT & Future Planning (MSIP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ik-Soo Shin.

Additional information

These authors contrilbuted equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Truong, C.K.P., Nguyen, T.D.D. & Shin, IS. Electrochemiluminescent Chemosensors for Clinical Applications: A Review. BioChip J 13, 203–216 (2019). https://doi.org/10.1007/s13206-019-3301-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-019-3301-9

Keywords

Navigation