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Abstract Disulfide bonds occurred in majority of secre-

ted protein. Formation of correct disulfide bonds are must

for achieving native conformation, solubility and activity.

Production of recombinant proteins containing disulfide

bond for therapeutic, diagnostic and various other purposes

is a challenging task of research. Production of such pro-

teins in the reducing cytosolic compartment of E. coli

usually ends up in inclusion bodies formation. Refolding of

inclusion bodies can be difficult, time and labor consuming

and uneconomical. Translocation of these proteins into the

oxidative periplasmic compartment provides correct envi-

ronment to undergo proper disulfide bonds formation and

thus achieving native conformation. However, not all

proteins can be efficiently translocated to the periplasm

with the help of bacterial signal peptides. Therefore, fusion

to a small well-folded and stable periplasmic protein is

more promising for periplasmic production of disulfide

bonded proteins. In the past decades, several full-length

proteins or domains were used for enhancing translocation

and solubility. Here, protein fusion tags that significantly

increase the yields of target proteins in the periplasmic

space are reviewed.

Keywords Fusion protein � Periplasmic space � Protein
folding � Solubility enhancer

Introduction

Since the advent of production of recombinant proteins,

application of therapeutic and diagnostic proteins as bio-

pharmaceuticals was changed remarkably (Walsh 2014).

These proteins are required in huge amount and usually can

not be obtained from natural sources due to extremely low

availability. Moreover, Genetically engineered proteins

with special benefits (e.g. Insulin analogs) are as such

molecules which can therefore only be obtained via

recombinant technology (Walsh 2000, 2006; Sanchez and

Demain 2012). Escherichia coli was the first and still

popularly used host for the fast and economical production

of recombinant proteins (Vincentelli and Romier 2013;

Chance et al. 1981; Choi and Lee 2004; Rosano and

Ceccarelli 2014; Lebendiker and Danieli 2014). In-depth

knowledge of genetic and biochemical pathways of E. coli

and availability of variety of vectors made is an attractive

host for such purposes. Although significant improvements

have been made at transcription, translation and translo-

cation, still obtaining soluble and bioactive proteins is a

major challenge (Pines and Inouye 1999; Baneyx 1999;

Rosano and Ceccarelli 2014).

Secreted proteins such as antibodies, enzymes, hor-

mones etc. are used for therapeutic and diagnostic appli-

cations. Secreted proteins having two or more cysteines

makes disulfide bonds, which is usually vital for structure

formation and bioactivity (Creighton 1997b; Creighton

et al. 1995; Clarke and Fersht 1993). The cytosol of

E. coli is reducing which gives inclusion bodies when

such proteins are expressed in the cytosol (Freedman

1989; Hwang et al. 1992; Aslund et al. 1994; Carmel-

Harel and Storz 2000; Russel 1995; Messens and Collet

2006). Usually in vitro oxidative refolding is difficult,

laborious, time consuming and may be uneconomical
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depending upon refolding yield (Lilie et al. 1998; Lange

and Rudolph 2009; Yamaguchi et al. 2013; Basu et al.

2011). Translocation of these proteins into the E. coli

periplasm provides favorable environment for oxidative

folding due to the presence of disulfide bond folding and

isomerization machinery (Gopal and Kumar 2013; Yoon

et al. 2010; Choi and Lee 2004). Moreover, proteases are

less abundant in periplasm and also its relatively less

crowded than cytosol which reduces the chances of pro-

teolysis and ease in the purification of recombinant pro-

teins (Makrides 1996). To secrete proteins into

periplasmic space, a translocation signal sequence must be

fused at the N terminus of proteins, but only the fusion of

signal sequence is not enough for efficient protein

translocation (Fekkes and Driessen 1999; Muller et al.

2001). The sequences on mature protein next to the signal

peptidase cut site and other parts of mature protein play

an important role in the secretion (Lee et al. 1989; Malik

et al. 2006). Under such condition, fusion to a full-length

periplasmic protein that is well stable, soluble and prop-

erly folded is more promising (Table 1).

Over two decades of extensive in vivo and in vitro

research on protein fusions constructs concluded that

fusion tags usually increases the yield and solubility of

their fusion partners (Costa et al. 2014; Waugh 2005).

Despite all these advancement, still it is difficult to choose

the best fusion system for a given protein of interest. In

general, selection of fusion tag depends upon the properties

of protein of interest itself such as size, stability, and

hydrophobicity; the expression site; and the usage of the

recombinant protein. After coupling with second protein

(fusion tag) the increase in yield and solubility the target

proteins varies in each fusions. The detailed mechanism by

which fusion proteins improve solubility and yield is not

well understood. There is two hypotheses: (a) fusion of a

stable or conserved structure to an insoluble recombinant

protein may serve to stabilize and promote proper folding

of the recombinant protein (Butt et al. 2005) and (b) fusion

tags may act as a nucleus of folding ‘‘molten globule

hypothesis’’ (Creighton 1997a).

Ideally, an effective periplasmic fusion system should

have the following features: (a) efficient translocator;

(b) enhance folding and solubility; (c) help in purification;

(d) facilitate quantification; (e) minimize proteolysis; (f) no

adverse effect on the structure and bioactivity; (g) easy and

specific removal of the fusion tag; (h) useful for different

classes of proteins and peptides. However, none of the

fusion tag is optimal with respect to all of these parameters.

Successful examples of each periplasmic fusion proteins

are listed in Table 2. In the following sections, merits and

demerits of available periplasmic fusion proteins are

discussed.

Ecotin

Ecotin (E. coli trypsin inhibitor) is a homodimeric protein

which is naturally localized in the periplasmic space

(Table 1). The properties of ecotin make it a promising

periplasmic fusion tag. It is moderately small in size

(16 kDa monomer), extremely stable (tolerates pH 1.0 and

100 �C for 30 min) and contains one disulfide bond in each

subunit (Chung et al. 1983). Due to the presence of

disulfide bonds, ecotin undergoes a pathway of oxidative

folding.

Naturally, ecotin is constitutively expressed (Chung

et al. 1983) for the defense of E. coli against trypsin like

serine proteases in the digestive tract and neutrophil elas-

tase like serine proteases in the blood. Ecotin had no

metabolic role or interaction with other proteins in E. coli

(Eggers et al. 2004). The C termini of each monomer in

dimeric ecotin protrude in opposite directions (Fig. 1a),

which will allow folding of passenger proteins at each end

without steric hindrance. Strong affinity of ecotin’s for

trypsin like serine protease will facilitate ecotin fusion

protein to purify via affinity chromatography. Ecotin’s

binding surface has been already randomized (Stoop and

Table 1 Properties of periplasmic fusion proteins

Fusion protein MW (kDa) calc. pI S–S bond Subcellular location

Ecotin 16 5.94 1 Periplasm

Maltose-binding protein 40.7 5.07 0 Periplasm

Z-domain of protein A 6.6 5.16 0 Secreted

ABD-domain of protein G 6 4.46 0 Secreted

CBD from exonuclease 11.1 8.44 1 Secreted

CBD from endonuclease 10.9 6.07 1 Secreted

Disulfide bond oxidoreductase 21.1 5.42 1 Periplasm

Barnase 12.3 8.88 0 Secreted

Size, calculated isoelectric point, number of disulfide bond and native localization were evaluated
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Craik 2003) to reduce its affinity to zymogens of serine

proteases, which would help to elute ecotin fusion proteins

under softer conditions.

Moreover, model protein in the ecotin fusion system can

be quantatively measured in a very sensitive trypsin inhi-

bition assays (Kang et al. 2005). Even in the cytosol ecotin

is stable and active; which makes it suitable candidate to be

used as cytoplasmic fusion tag (Kang et al. 2005). Ecotin

can also be produced in monomeric native state after

removal of the last 10 residues (Pal et al. 1996) Thus,

ecotin fusion protein in monomeric state is feasible. Ecotin

fusion tag have been used for efficient translocation, sol-

ubility enhancement and purification of proteins and pep-

tides (Paal et al. 2009; Malik et al. 2006, 2007).

Maltose-binding protein

Maltose-binding protein (MBP) is cysteine-less relatively

large (40.6 kDa) periplasmic protein (Fig. 1b) (Duplay

et al. 1984). It is known for its noteworthy solubility

enhancement when it is fused at the N terminus of model

proteins (Raran-Kurussi et al. 2015; Raran-Kurussi and

Waugh 2012; Sachdev and Chirgwin 1998). MBP has been

frequently utilized for cytosolic expression but due to its

natural periplasmic localization, it is also utilized as

periplasmic fusion tag for enhancing secretion, solubility as

well as purification of target proteins (Salema and Fer-

nandez 2013; Planson et al. 2003). In certain cases, it was

found that MBP attains natively folded state and remains

soluble while the passenger proteins could not attained

properly folded state and exist as in the state of soluble

aggregates (Nallamsetty et al. 2005; Nomine et al. 2001;

Sachdev and Chirgwin 1999). The affinity of MBP for

maltose is *1 lM which allowed to purify MBP fusion

protein through affinity chromatography (Betton and Hof-

nung 1996). Moreover, MBP is thermodynamically mod-

erately stable with the Tm of 62.8 �C at pH 8.3

(Novokhatny and Ingham 1997) and individual compo-

nents of MBP fusions are slightly more stable than their

counterparts in the fusion protein (Blondel et al. 1996).

Staphylococcal protein A

Staphylococcal protein A (SpA) is a surface protein of

Gram-positive bacterium Staphylococcus aureus which

has strong affinity and high specificity for constant (Fc)

part of human immunoglobulins as well as large number

of other animals (Eliasson et al. 1988; Cedergren et al.

1993). SpA is a highly soluble 31 kDa protein. Chemi-

cally denatured SpA renatures efficiently which assists

refolding of the target protein in the SpA fusion system

(Samuelsson et al. 1991). SpA is a cysteine-less protein,

thus abolishing the chances of interference in disulfide

bond formation with fused protein of interest (Kashimura

et al. 2013; Uhlen et al. 1984). The gene of SpA is

highly repetitive which consists of signal sequence fol-

lowed by five small highly similar domains (E, D, A, B

and C) and C terminal membrane anchoring sequence.

Table 2 Examples of protein

fusion tag assisted production of

recombinant proteins in the

periplasmic space of E. coli

Fusion protein Model protein References

Ecotin Pepsinogen Malik et al. (2006)

Ecotin Proinsulin Malik et al. (2007)

Ecotin Octapeptide Paal et al. (2009)

MBP Merozoite surface protein I Planson et al. (2003)

MBP Nanobodies (singe domain antibody) Salema and Fernandez (2013)

MBP Membrane protein U24 Tait and Straus (2011)

MBP Single chain antibody Hayhurst (2000)

MBP Pokeweed antiviral protein Honjo and Watanabe (1999)

SpA Insulin like growth factor-II Hammarberg et al. (1989)

SpA Alkaline phosphatase Engel et al. (1992)

SpG Insulin like growth factor-II Hammarberg et al. (1989)

SpG Octapeptide Stahl et al. (1989)

CBD Polypeptide Hasenwinkle et al. (1997)

CBD Lipase Hwang et al. (2004)

CBD Beta-glucosidase Ong et al. (1991)

CBD Alkaline phosphatase Greenwood et al. (1989)

DsbA Enterokinase catalytic subunit Collinsracie et al. (1995)

DsbA Proinsulin Winter et al. (2000)

Barnase Cystein knot peptide Schmoldt et al. (2005)
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The B-domain has been engineered to create smaller

variants (7 kDa) of SpA, called as Z-domain (Nilsson

et al. 1987). Depending upon localization requirements

of the target protein, large number of expression plas-

mids with or without signal sequences for the production

of single Z-domain (7 kDa) or double Z-domains

(14 kDa) fusions (Fig. 1c) has been developed (Nilsson

et al. 1994, 1996; Hammarberg et al. 1989; Stahl et al.

1989). The fusion protein with Z-domain was more

efficiently translocated in comparison to full length SpA

proteins (Nilsson et al. 1997).

Streptococcal protein G

Streptococcal protein G (SpG) present on the streptococci

surface is a bifunctional receptor and capable of binding

with both IgG and serum albumin from different species

with different affinities (Nygren et al. 1988). The IgG and

albumin binding regions are structurally separated on the

SpG. The serum albumin binding region is known as ABD

(albumin-binding domain), consists of three binding motifs

(each *5 kDa) (Fig. 1d). Depending upon the localization

of the target proteins, ABD with or without signal sequence

has been used for expression of fusion protein. Subse-

quently, fusion proteins were purified via HSA-affinity

chromatography in one-step (Hammarberg et al. 1989;

Larsson et al. 1996; Stahl et al. 1989).

Cellulose binding domain (CBD)

Nearly 111 residues from endoglucanase (Fig. 1e) and 100

residues from exoglucanase (Fig. 1f) of Cellulomonas fimi,

which has high affinity for cellulose, have been used for

translocation to periplasmic space and solubility enhance-

ment of target proteins (Gilkes et al. 1988, 1992; Warren

et al. 1986; Hwang et al. 2004; Hasenwinkle et al. 1997;

Creagh et al. 1996; Ong et al. 1991). The purification of

cellulose binding domain fusion protein was achieved via

relatively inexpensive ligand matrix (cellulose) (Green-

wood et al. 1989, 1992; Ong et al. 1991).

Disulfide bond oxidoreductase

Disulfide bond oxidoreductase (DsbA) is the key enzyme

of periplasmic oxidoreductive system (Fig. 1g). It facili-

tates correct disulfide bond formation via intra- and inter-

molecular catalysis (Bardwell et al. 1993). In

biotechnological applications, target proteins having mul-

tiple disulfide bonds (enterokinase catalytic subunit,

proinsulin) were fused at the C terminus of DsbA to

enhance disulfide bond formation as well as stabilize

unfolded target protein via its polypeptide binding site

(Collinsracie et al. 1995; Winter et al. 2000). After fusion

with DsbA, these proteins were obtained in the well-folded

soluble state in the periplasmic space. DsbA is a potent

protein thiol oxidase. It has been observed in vitro exper-

iments that DsbA causes non-native disulfide bond for-

mation in proteins having multiple disulfide bonds

(Hirudin, BPTI) (Wunderlich and Glockshuber 1993;

Zapun and Creighton 1994). Also, in vivo co-expression of

DsbA resulted in inclusion bodies formation of IGF-I (Joly

et al. 1998).

Barnase

Barnase is an enzymatically inactive variant (H102A) of

extracellular RNAse from Bacillus amyloliquefaciens

(Fig. 1h). It is monomeric, cysteine-less protein of rela-

tively small size. For biotechnological applications,

Fig. 1 Three-dimensional structure of periplasmic fusion proteins.

a ecotin (1ECZ), b Maltose binding protein (1DMB), c Z-domain of

protein A (1LP1), d ABD-domain of protein G (1EM7), e CBD of

endoglucanase (1EXG), f CBD of exoglucanase (modelled 3D

structure), g disulfide bond oxidoreductase (1A2J), h Barnase (1RNB)
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enzymatically inactive variant of RNAse was used as a

fusion protein to enhance the secretion of cysteine-knot

peptides in the periplasmic space. It was found that

majority of the cysteine-knot peptides were in the native

state when fused with barnase (Schmoldt et al. 2005).

Moreover, the Barnase fusion protein could be purified via

immobilized barstar (Barnase inhibitor) in single step

(Schmoldt et al. 2005).

Conclusion

Every protein is unique and due to their different applica-

tions such as academic research, diagnostic or therapeutic

usage, the quantity and purity level vary. Therefore, no

single fusion tag will address every requirement. Fusion

tags are helpful in enhancing their solubility and stability.

Protein fusion tag with lM-nM ligand affinity generally

results in 90–99 % purity after affinity chromatography.

Removal of protein fusion tag and producing recombinant

protein with authentic N terminal adds another layer of

complexity. When considering which protein fusion to use,

important queries should keep in mind such as: nature of

protein itself, how much protein required, application of

protein, is fusion tag removal necessary or not, how much

additional residues could be tolerated at N terminal? To

remove most part of the fusion protein, highly specific

protease cleavage site (TEV protease, thrombin, enteroki-

nase, etc.) could be placed in the linker region between

fusion tag and model protein. Also, non-specific proteases

such as trypsin could be used to generate authentic N ter-

minus as demonstrated in the case of Ecotin-proinsulin

fusion protein (Malik et al. 2007). If authentic N terminus

is must for the application, ubiquitin fusion technology

could be used as successfully demonstrated in ecotin–

ubiquitin–peptide fusion system (Paal et al. 2009).
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