Skip to main content

Advertisement

Log in

Sustainable process to co-synthesize nano carbon dots, nano hydroxyapatite and nano β-dicalcium diphosphate from the fish scale

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

The conventional protocols for the extraction of biological hydroxyapatite employ the prior removal of organic material using severe chemical treatment, which quite often limit the purity and crystalline properties of synthesized hydroxyapatite. The present study describes a process to co-synthesize four high value nano products from scale of Labeo rohita, viz. nano carbon dots, nano hydroxyapatite, nano β-dicalcium diphosphate and nano carbon dot—hydroxyapatite composite. In the process, the organic matter in fish scale is converted to nano carbon dots by a hydrothermal process using acetic acid (1:1) and the mineral residue precipitated was converted to hydroxyapatite, following a sintering protocol. The acetic acid not only functioned as a medium to release the mineral—organic linkage but also acted as a base to hydrolyze the collagenous proteins linked with calcium phosphate in the fish scales. The hydrolyzed collagenous protein was in turn transformed into fluorescent nano carbon dots. β-Dicalcium diphosphate was seen attached over carbon dots, which was separated by crystallization followed by high temperature sintering. Hydroxyapatite: carbon dot composite was synthesized through a hydrothermal method. The spectral and morphological studies of the composite showed strong interaction between carbon dot and hydroxyapatite. All the synthesized materials were characterized using ultraviolet visible spectroscopy, Fourier transform infrared spectroscopy, powder X-ray diffraction, atomic force microscope, transmission electron microscope and electrochemical impedance techniques. The study proposes a sustainable method for the complete utilization of fish scale by converting into high value nano products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data pertaining to this research paper is available with the corresponding author and will be shared the same after a reasonable request.

Code availability

The manuscript not used any exclusive software to analyse data.

References

  • Abu-Eishah SI, El-Jallad IS, Muthaker M, Touqan M, Sadeddin W (1991) Beneficiation of calcareous phosphate rocks using dilute acetic acid solutions: optimisation of operating conditions for Ruseifa (Jordan) phosphate. Int J Miner Process 31(1–2):115–126

    CAS  Google Scholar 

  • Alif MF, Aprillia W, Arief S (2018) A hydrothermal synthesis of natural hydroxyapatite obtained from Corbicula moltkiana freshwater clams shell biowaste. Mater Lett 230:40–43

    CAS  Google Scholar 

  • Amjadi M, Hallaj T, Asadollahi H, Song Z, de Frutos M, Hildebrandt N (2017) Facile synthesis of carbon quantum dot/silver nanocomposite and its application for colorimetric detection of methimazole. Sens Actuator b Chem 244:425–432

    CAS  Google Scholar 

  • An L, Li W, Xu Y, Zeng D, Cheng Y, Wang G (2016) Controlled additive-free hydrothermal synthesis and characterization of uniform hydroxyapatite nanobelts. Ceram Int 42(2):3104–3112

    CAS  Google Scholar 

  • Athinarayanan J, Periasamy VS, Alshatwi AA (2020) Simultaneous fabrication of carbon nanodots and hydroxyapatite nanoparticles from fish scale for biomedical applications. Mater Sci Eng C 117:111313

    CAS  Google Scholar 

  • Barakat NA, Khil MS, Omran AM, Sheikh FA, Kim HY (2009) Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three different methods. J Mater Process Technol 209(7):3408–3415

    CAS  Google Scholar 

  • Ber S, Torun Köse G, Hasırcı V (2005) Bone tissue engineering on patterned collagen films: an in vitro study. Biomaterials 26:1977–1986

    CAS  Google Scholar 

  • Boudin S, Grandin A, Borel MM, Leclaire A, Raveau B (1993) Redetermination of the β-Ca2P2O7 structure. Acta Crystallogr C 49(12):2062–2064

    Google Scholar 

  • Brown JL, Nair LS, Bender J, Allcock HR, Laurencin CT (2007) The formation of an apatite coating on carboxylated polyphosphazenes via a biomimetic process. Mater Lett 61(17):3692–3695

    CAS  Google Scholar 

  • Burman M, Patra A (2018) Current status and prospects on chemical structure driven photoluminescence behaviour of carbon dots. J Photochem Photobiol c Photochem Rev 37:1–22

    Google Scholar 

  • Chai Y, Tagaya M (2018) Simple preparation of hydroxyapatite nanostructures derived from fish scales. Mater Lett 222:156–159

    CAS  Google Scholar 

  • Chai Y, Nishikawa M, Tagaya M (2018) Preparation of gold/hydroxyapatite hybrids using natural fish scale template and their effective albumin interactions. Adv Powder Technol 29(5):1198–1203

    CAS  Google Scholar 

  • Chang Q, Li KK, Hu SL, Dong YG, Yang JL (2016) Hydroxyapatite supported N-doped carbon quantum dots for visible-light photocatalysis. Mater Lett 175:44–47

    CAS  Google Scholar 

  • Chen QL, Ji WQ, Chen S (2016) Direct synthesis of multicolor fluorescent hollow carbon spheres encapsulating enriched carbon dots. Sci Rep 6(1):1–8

    Google Scholar 

  • Cheng ZH, Yasukawa A, Kandori K, Ishikawa T (1998) FTIR study on incorporation of CO 2 into calcium hydroxyapatite. J Chem Soc Faraday Trans 94(10):1501–1505

    Google Scholar 

  • Dehvari K, Liu KY, Tseng PJ, Gedda G, Girma WM, Chang JY (2019) Sonochemical-assisted green synthesis of nitrogen-doped carbon dots from crab shell as targeted nanoprobes for cell imaging. J Taiwan Inst Chem Engrs 95:495–503

    CAS  Google Scholar 

  • Dey A, Bomans PH, Müller FA, Will J, Frederik PM, de With G, Sommerdijk NA (2010) The role of prenucleation clusters in surface-induced calcium phosphate crystallization. Nat Mater 9(12):1010–1014

    CAS  Google Scholar 

  • Fan H, Zhang M, Bhandari B, Yang CH (2020) Food waste as a carbon source in carbon quantum dots technology and their applications in food safety detection. Trends Food Sci Technol 95:86–96

    CAS  Google Scholar 

  • Feng H, Li X, Deng X, Li X, Guo J, Ma K, Jiang B (2020) The lamellar structure and biomimetic properties of a fish scale matrix. RSC Adv 10(2):875–885

    CAS  Google Scholar 

  • Fowler BO, Markovic M, Brown WE (1993) Octacalcium phosphate. 3. Infrared and Raman vibrational spectra. Chem Mater 5(10):1417–1423

    CAS  Google Scholar 

  • Guang S, Ke F, Shen Y (2015) Controlled preparation and formation mechanism of hydroxyapatite nanoparticles under different hydrothermal conditions. J Mater Sci Technol 31:852–856. https://doi.org/10.1016/j.jmst.2014.12.013

    Article  CAS  Google Scholar 

  • He L, Feng Z (2007) Preparation and characterization of dicalcium phosphate dihydrate coating on enamel. Mater Lett 61(18):3923–3926

    CAS  Google Scholar 

  • Hiller JC, Thompson TJ, Evison MP, Chamberlain AT, Wess TJ (2003) Bone mineral change during experimental heating: an X-ray scattering investigation. Biomaterials 24(28):5091–5097

    CAS  Google Scholar 

  • Holder CF, Schaak RE (2019) Tutorial on powder X-ray diffraction for characterizing nanoscale materials. ACS Nano 13:7359–7365. https://doi.org/10.1021/acsnano.9b05157

    Article  CAS  Google Scholar 

  • Ibrahim M, Labaki M, Giraudon JM, Lamonier JF (2020) Hydroxyapatite, a multifunctional material for air, water and soil pollution control: a review. J Hazard Mater 383:121139

    CAS  Google Scholar 

  • Janus Ł, Piątkowski M, Radwan-Pragłowska J, Bogdał D, Matysek D (2019) Chitosan-based carbon quantum dots for biomedical applications: synthesis and characterization. Nanomaterials 9(2):274

    CAS  Google Scholar 

  • Joris SJ, Amberg CH (1971) Nature of deficiency in nonstoichiometric hydroxyapatites. II. Spectroscopic studies of calcium and strontium hydroxyapatites. J Phys Chem 75(20):3172–3178

    CAS  Google Scholar 

  • Joschek S, Nies B, Krotz R, Göpferich A (2000) Chemical and physicochemical characterization of porous hydroxyapatite ceramics made of natural bone. Biomaterials 21(16):1645–1658

    CAS  Google Scholar 

  • Kandori K, Mizumoto S, Toshima S, Fukusumi M, Morisada Y (2009) Effects of heat treatment of calcium hydroxyapatite particles on the protein adsorption behavior. J Phys Chem b 113(31):11016–11022

    CAS  Google Scholar 

  • Keerthana AK, Ashraf PM (2019) Carbon nanodots synthesized from chitosan and its application as a corrosion inhibitor in boat-building carbon steel BIS2062. Appl Nanosci 10(4):1061–1071. https://doi.org/10.1007/s13204-019-01177-0

    Article  CAS  Google Scholar 

  • Kikuchi M, Matsumoto HN, Yamada T, Koyama Y, Takakuda K, Tanaka J (2004) Glutaraldehyde cross-linked hydroxyapatite/collagen self-organized nanocomposites. Biomaterials 25(1):63–69

    CAS  Google Scholar 

  • Lala SD, Deb P, Barua E, Deoghare AB, Chatterjee S (2019) Characterization of hydroxyapatite derived from eggshells for medical implants. Mater Today Proc 15:323–327

    Google Scholar 

  • Liu WK, Liaw BS, Chang HK, Wang YF, Chen PY (2017a) From waste to health: synthesis of hydroxyapatite scaffolds from fish scales for lead ion removal. JOM 69(4):713–718. https://doi.org/10.1007/s11837-017-2270-5

    Article  CAS  Google Scholar 

  • Liu W, Li C, Sun X, Pan W, Yu G, Wang J (2017b) Highly crystalline carbon dots from fresh tomato: UV emission and quantum confinement. Nanotechnology 28(48):485705. https://doi.org/10.1088/1361-6528/aa900b

    Article  CAS  Google Scholar 

  • Lombardi M, Palmero P, Haberko K, Pyda W, Montanaro L (2011) Processing of a natural hydroxyapatite powder: from powder optimization to porous bodies development. J Eur Ceram Soc 31(14):2513–2518

    CAS  Google Scholar 

  • Luo PG, Yang F, Yang ST, Sonkar SK, Yang L, Broglie JJ, Liu Y, Sun YP (2014) Carbon-based quantum dots for fluorescence imaging of cells and tissues. RSC Adv 4(21):10791–10807

    CAS  Google Scholar 

  • Mahboob S (2015) Isolation and characterization of collagen from fish waste material-skin, scales and fins of Catla catla and Cirrhinus mrigala. J Food Sci Technol 52(7):4296–4305. https://doi.org/10.1007/s13197-014-1520-6

    Article  CAS  Google Scholar 

  • Maidaniuc A, Miculescu F, Ciocoiu RC, Butte TM, Pasuk I, Stan GE, Voicu SI, Ciocan LT (2020) Effect of the processing parameters on surface, physico-chemical and mechanical features of bioceramics synthesized from abundant carp fish bones. Ceram Int 46(8):10159–10171. https://doi.org/10.1016/j.ceramint.2020.01.007

    Article  CAS  Google Scholar 

  • Muhammad N, Gao Y, Iqbal F, Ahmad P, Ge R, Nishan U, Rahim A, Gonfa G, Ullah Z (2016) Extraction of biocompatible hydroxyapatite from fish scales using novel approach of ionic liquid pretreatment. Sep Purif Technol 161:129–135

    CAS  Google Scholar 

  • Olszta MJ, Cheng X, Jee SS, Kumar R, Kim YY, Kaufman MJ, Douglas EP, Gower LB (2007) Bone structure and formation: a new perspective. Mater Sci Eng r Rep 58(3–5):77–116

    Google Scholar 

  • Padmanabhan SK, Balakrishnan A, Chu MC, Lee YJ, Kim TN, Cho SJ (2009) Sol–gel synthesis and characterization of hydroxyapatite nanorods. Particuology 7(6):466–470

    CAS  Google Scholar 

  • Sahiner N (2018) Carbon dots: preparation, properties, and application. In: Khan A, Jawaid M, Inamuddin, Asiri AM (eds) Nanocarbon and its composites. Wood head Publishing, Elsevier Ltd, Oxford, pp 651–676

    Google Scholar 

  • Sahu S, Behera B, Maiti TK, Mohapatra S (2012) Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem Commun 48(70):8835–8837

    CAS  Google Scholar 

  • Sankar S, Sekar S, Mohan R, Rani S, Sundaraseelan J, Sastry TP (2008) Preparation and partial characterization of collagen sheet from fish (Lates calcarifer) scales. Int J Biol Macromol 42(1):6–9

    CAS  Google Scholar 

  • Sarkar C, Chowdhuri AR, Kumar A, Laha D, Garai S, Chakraborty J, Sahu SK (2018) One pot synthesis of carbon dots decorated carboxymethyl cellulose-hydroxyapatite nanocomposite for drug delivery, tissue engineering and Fe3+ ion sensing. Carbohydr Polym 181:710–718

    CAS  Google Scholar 

  • Shafiu Kamba A, Ismail M, Tengku Ibrahim TA, Zakaria ZAB (2013) Synthesis and characterisation of calcium carbonate aragonite nanocrystals from cockle shell powder (Anadara granosa). J Nanomater 2013:398357. https://doi.org/10.1155/2013/398357

    Article  CAS  Google Scholar 

  • Shen J, Zhu Y, Chen C, Yang X, Li C (2011) Facile preparation and upconversion luminescence of graphene quantum dots. Chem Commun 47:2580–2582

    CAS  Google Scholar 

  • Shen J, Zhu Y, Yang X, Zong J, Zhang J, Li C (2012) One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light. New J Chem 36(1):97–101

    CAS  Google Scholar 

  • Vahabzadeh S, Roy M, Bandyopadhyay A, Bose S (2015) Phase stability and biological property evaluation of plasma sprayed hydroxyapatite coatings for orthopedic and dental applications. Acta Biomater 17:47–55

    CAS  Google Scholar 

  • Vasimalai N, Vilas-Boas V, Gallo J, de Fátima CM, Menéndez-Miranda M, Costa-Fernández JM, Diéguez L, Espiña B, Fernández-Argüelles MT (2018) Green synthesis of fluorescent carbon dots from spices for in vitro imaging and tumour cell growth inhibition. Beilstein J Nanotechnol 9(1):530–544

    CAS  Google Scholar 

  • Wang Y, Hu A (2014) Carbon quantum dots: synthesis, properties and applications. J Mater Chem C Mater Opt Electron Dev 2:6921–6939

    CAS  Google Scholar 

  • Wang C, Xu Z, Cheng H, Lin H, Humphrey MG, Zhang C (2015) A hydrothermal route to water-stable luminescent carbon dots as nanosensors for pH and temperature. Carbon 82:87–95

    CAS  Google Scholar 

  • Wu SC, Tsou HK, Hsu HC, Hsu SK, Liou SP, Ho WF (2013) A hydrothermal synthesis of eggshell and fruit waste extract to produce nanosized hydroxyapatite. Ceram Int 39(7):8183–8188

    CAS  Google Scholar 

  • Xie J, Baumann MJ, McCabe LR (2004) Osteoblasts respond to hydroxyapatite surfaces with immediate changes in gene expression. J Biomed Mater Res 71A:108–117

    CAS  Google Scholar 

  • Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126(40):12736–12737

    CAS  Google Scholar 

  • Yang ST, Wang X, Wang H, Lu F, Luo PG, Cao L, Meziani MJ, Liu JH, Liu Y, Chen M, Huang Y (2009) Carbon dots as nontoxic and high-performance fluorescence imaging agents. J Phys Chem c 113(42):18110–18114

    CAS  Google Scholar 

  • Zhang QY, Chen JY, Feng JM (2003) Dissolution and mineralization behaviors of HA coatings. Biomaterials 24(26):4741–4748

    CAS  Google Scholar 

  • Zhang Y, Venugopal JR, El-Turki A, Ramakrishna S, Su B, Lim CT (2008) Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 29(32):4314–4422

    CAS  Google Scholar 

  • Zhang Z, Du Y, Wang B, Wang Z, Kang R, Guo D (2017) Nanoscale wear layers on silicon wafers induced by mechanical chemical grinding. Tribol Lett 65(4):1–13

    Google Scholar 

  • Zhang Y, Gao Z, Zhang W, Wang W, Chang J, Kai J (2018a) Fluorescent carbon dots as nanoprobe for determination of lidocaine hydrochloride. Sens Actuat b Chem 262:928–937

    CAS  Google Scholar 

  • Zhang X, Jiang M, Na N, Chen Z, Li S, Li S et al (2018b) Review of natural product-derived carbon dots: from natural products to functional materials. Chem Sus Chem 1:11–24

    Google Scholar 

  • Zhang Y, Gao Z, Yang X, Chang J, Liu Z, Jiang K (2019a) Fish-scale-derived carbon dots as efficient fluorescent nanoprobes for detection of ferric ions. RSC Adv 9(2):940–949

    CAS  Google Scholar 

  • Zhang Z, Cui J, Zhang J, Liu D, Yu Z, Guo D (2019b) Environment friendly chemical mechanical polishing of copper. Appl Surf Sci 467:5–11

    Google Scholar 

  • Zhang Z, Liao L, Wang X, Xie W, Guo D (2020) Development of a novel chemical mechanical polishing slurry and its polishing mechanisms on a nickel alloy. Appl Surf Sci 506:144670

    CAS  Google Scholar 

  • Zhao S, Lan M, Zhu X, Xue H, Ng TW, Meng X et al (2015) Green synthesis of bifunctional fluorescent carbon dots from garlic for cellular imaging and free radical scavenging. ACS Appl Mater Interfaces 7(31):17054–17060. https://doi.org/10.1021/acsami.5b03228

    Article  CAS  Google Scholar 

  • Zhou S, Su Q, Li X, Weng J (2006) A novel in situ synthesis of dicalcium phosphate dehydrate nanocrystals in biodegradable polymer matrix. Mater Sci Eng A 430(1–2):341–345

    Google Scholar 

  • Zhuang Z, Aizawa M (2013) Protein adsorption on single-crystal hydroxyapatite particles with preferred orientation to a (b)-and c-axes. J Mater Sci Mater Med 24(5):1211–1216

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Director of ICAR Central Institute of Fisheries Technology for providing facilities, the technical staff of the Fishing Technology Division of ICAR-CIFT, STIC, CUSAT for extending SEM facilities, Shimadzu Technical Centre Mumbai, India, for fluorescent spectroscopy analysis and Head Microbiology Division of ICAR CIFT for providing FTIR facilities. Thanks to Editing India for English correction of the manuscript.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

PMA: planning, data analysis, synthesis of DCP, CD:HAP, instrumental analysis, interpretation, manuscript preparation and submission. SS: laboratory synthesis of carbon dot and hydroxyapatite and analysis. PKB: sample collection, planning, technical input, interpretation and manuscript preparation.

Corresponding author

Correspondence to P. Muhamed Ashraf.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 291 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashraf, P.M., Stephen, S. & Binsi, P.K. Sustainable process to co-synthesize nano carbon dots, nano hydroxyapatite and nano β-dicalcium diphosphate from the fish scale. Appl Nanosci 11, 1929–1947 (2021). https://doi.org/10.1007/s13204-021-01875-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-021-01875-8

Keywords

Navigation