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Abstract In this study, polyphenolic curcumin is entrap-
ped within microcomposites made of biopolymers chitosan
(CS) and carboxymethyl cellulose (CMC) formulated by
ionic gelation method. Here, different concentrations of
two chelating agents, barium chloride and sodium
tripolyphosphate, are used to make microcomposites. Thus,
the synthesized microparticles were characterized by FTIR,
and their surface morphology was studied by SEM. Drug
encapsulation efficiency and the drug release kinetics of
CS-CMC composites are also studied. The produced
microcomposites were used to study antibacterial activity
in vitro.

Keywords Chitosan (CS) - Carboxymethyl cellulose
(CMC) - Sodium tripolyphosphate (TPP) - Barium chloride

Introduction

The main aim of any drug therapy against any disease is
to release the desired therapeutics at the targeted site and
also to maintain the concentration for the entire duration
of treatment (Mitra and Dey 2011). Microparticles are
small particles with the diameter ranging between 1 and
1000 pm, made of either natural or synthetic materials.
Microparticles used for drug delivery should be biocom-
patible and biodegradable. The design of controlled
release by microparticles depends on the nature of the
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polymer, method adapted and various other factors which
affect its surface properties (Edwards et al. 1997; Andri-
anov and Payne 1998; Zimmer and Kreuter 1995; Kurita
1986). Natural biopolymers, like chitosan (CS), car-
boxymethyl cellulose (CMC), polyethylene glycol (PEG),
poly(lactic acid) (PLA), polyhydroxyalkanoates (PHA)
etc., can be used for drug delivery (Wang et al. 2011; Yue
et al. 2013). Among these biopolymers, chitosan made of
polymer of glucosamine and N-acetyl glucosamine is
absolutely biocompatible and biodegradable, which has
also got flexibility in reacting with polyanions to shape
edifices and gels (Shahidi and Synowiecki 1991; Sanford
1989). Chitosan microspheres/nanoparticles can be pre-
pared by various methods like precipitation, complex
coacervation, modified emulsification, ionotropic gelation,
glutaraldehyde cross-linking, thermal cross-linking etc.
(Kas 1997; Yao et al. 1995). CMC has got high viscosity,
good solubility and high chemical stability. CMC is also
an excellent mucoadhesive, safe, hydrophilic, biocom-
patible and biodegradable (Smart et al. 1994). CMC is an
anionic polysaccharide, which has been proven to be
nontoxic as well as biodegradable. Moreover, CMC can
easily form a microparticle or nanoparticle and can be
used for drug delivery (Chandy and Sharma 1990; Cer-
chiara et al. 2016; Bigucci et al. 2015; Garcia et al. 2015;
Lu et al. 2010). In acid medium, the weak base CS can
react with an anionic polymer, like TPP and CMC, to
form microparticle (Chandy and Sharma 1990; Takishima
et al. 2002). CUR is a curcuminoid isolated from the
rhizome of Curcuma longa L. (Zingiberaceae family)
with the common name of turmeric (Ammon and Wahl
1991). CUR is well known for its various bioactivities
such as antioxidant, antimicrobial, anticarcinogenic etc.
(Wright et al. 2013; Niamsa and Sittiwet 2009). The
drawback of CUR is that it has poor solubility in aqueous

Disase cllod dyao .
KACST a,51é1)lg roglel @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s13204-016-0536-9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13204-016-0536-9&amp;domain=pdf

1220

Appl Nanosci (2016) 6:1219-1231

media, low bioavailabilty, poor circulation time and
degrades easily under physiological conditions (Jisha
et al. 2015). CUR loaded-myristic acid microemulsion
with 0.86 pg ml~' of CUR is suitable for skin con-
sumption, which inhibits 50 % of the S. epidermidis
growth, one of the nosocomial infectious agents (Liu and
Huang 2012). Nanoformulation of CUR with synthetic
polymer and liposomes has been effectively carried out to
increase the solubility and degradability of hydrophobic
CUR drugs (Yu and Huang 2012). In this study, barium
chloride and TPP are anions which bring the amine
gathering of CS and cross-links CMC. Here, CS
microparticles epitomize the CUR drug, and the synthe-
sized microparticles are characterized using various
instrumental methods like FTIR, SEM, encapsulation
efficiency, drug release kinetics and in vitro controlled
release studies against Pseudomonas aeruginosa.

Materials and methods
Materials

All the chemicals and reagents used in this study were
purchased of analytical grade. The synthesis of microcar-
riers has been completed with the following chemicals:
barium chloride, chitosan extrapure (CgH;{NO,), curcumin
and agar powder were obtained from Sisco Research
Laboratories Pvt. Ltd; acetic acid was purchased from
Qualigens Fine Chemicals; sodium tripolyphosphate (an-
hydrous) was purchased from Loba Chemie; car-
boxymethyl cellulose was purchased from Micro Fine
Chemicals, India; ethyl alcohol AR was obtained from
Changshu Yangyuan Chemicals; Milli-Q water was used
for all the chemical preparations; and curcumin was used as
the anticancer drug to be loaded in the microcarriers for the
study.

Preparation of microcarriers using TPP

0.4 g of CS was dissolved in 100 ml acetic acid (0.1 N).
0.2, 0.4 and 0.6 % TPP were prepared in 50 ml deionized
water (Calvo et al. 1997). TPP solution was added
dropwise to CS solution at room temperature. 50 ml of
0.4 % CMC was prepared in deionized water and was
added dropwise to CS chelated with TPP solution. The
solution was left for 2 h and centrifuged at 5000 rpm for
15 min. The microcarriers prepared with 0.2, 0.4 and
0.6 % TPP were labeled as CS-CMC-S1, CS-CMC-S2
and CS—-CMC-S3, respectively. The solutions were lyo-
philized. Here, microcarriers are formed due to the
interaction of oppositely charged cross-linking agent
(Zhao et al. 2011).
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Preparation of microcarriers using barium chloride

The above procedure was used to prepare microcarriers
using barium chloride replacing TPP. The microcarriers
prepared with 0.2, 0.4 and 0.6 % barium chloride were
labeled as CS-CMC-B1, CS—-CMC-B2 and CS-CMC-B3,
respectively. The solutions were lyophilized and used for
further studies.

Preparation of CUR-encapsulated polymeric
microcarriers

CUR was loaded into polymeric microcarriers following
ionic gelation method. 0.05 g of CUR was dissolved in
50 ml ethanol. This was added to 0.4 g CS dissolved in
100 ml acetic acid (0.1 N). 0.2, 0.4, and 0.6 % barium
chloride solution was added dropwise to CS—CUR solution,
and CMC solution was added to ionized CS—CUR-barium
chloride solution and left at room temperature for 2 h. The
solutions were centrifuged at 5000 rpm for 15 min. The
microcarriers prepared with 0.2, 0.4 and 0.6 % barium
chloride were labeled as CS—-CUR-CMC-B1, CS—-CUR-
CMC-B2 and CS—-CUR-CMC-B3, respectively. The above
method was repeated for the synthesis of CURencapsulated
microparticles. The microcarriers prepared with 0.2, 0.4 and
0.6 % TPP were labeled as CS-CUR-CMC-S1, CS-CUR~-
CMC-S2 and CS—CUR-CMC-S3, respectively.

Characterization of the microcomposites
Fourier transfer infrared spectroscopy (FTIR) analysis

IR spectrum was recorded using IRAffinity-1s (Shimadzu,
Japan) instrument. Drug-loaded and unloaded microcarrier
pellets were tested with transmission mode scan in the

spectral region of 4000—400 cm™".

Scanning electron microscope (SEM) analysis

The microcarriers with and without CUR loaded were
sprayed onto glass plate and sputter-coated with gold and
examined under SEM (JEOL JSM-5610LV).

Evaluation of encapsulation efficiency

The microparticles were separated by centrifugation at
3000 rpm for 15 min, and drug encapsulation efficiency
(EE) of the microparticles was evaluated by measuring the
absorption of the supernatant liquid using UV spec-
trophotometer at 425 nm (4,,x of CUR) (Parize et al. 2012;
Mukerjee and Vishwanatha 2009; Benetton et al. 1998).
The supernatant was collected at different intervals, three
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Fig. 1 FTIR analysis of CS microparticles chelated with BaCl, d chelated with 0.4 % BaCl, and loaded with drug (CS-CMC-CUR~-
a chelated with 0.2 % BaCl, and without drug (CS-CMC-B1), B2), e chelated with 0.6 % BaCl, and without drug (CS-CMC-B3),
b chelated with 0.2 % BaCl, and loaded with drug (CS-CMC-CUR- f chelated with 0.6 % BaCl, and loaded with drug (CS—-CMC-CUR-
B1), ¢ chelated with 0.4 % BaCl, and without drug (CS-CMC-B2), B3)
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Fig. 2 FTIR analysis of CS microparticles chelated with TPP
a chelated with 0.2 % TPP and without drug (CS-CMC-S1),
b chelated with 0.2 % TPP and loaded with drug (CS-CMC-CUR-
S1), ¢ chelated with 0.4 % TPP and without drug (CS—-CMC-S2),

samples were taken, and the mean value and standard error
were calculated. The graph was plotted by taking time in
minutes on x axis and absorbance in nm on y axis from the
values obtained.
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Wavenumbers (cm-1)

d chelated with 0.4 % TPP and loaded with drug (CS-CMC-CUR-
S2), e chelated with 0.6 % TPP and without drug (CS-CMC-S3),
fchelated with 0.6 % TPP and loaded with drug (CS—-CMC-CUR-S3)

In vitro drug release kinetics

The drug release kinetics for microcarriers was studied
using dialysis membrane technique (Hua 2014) which is
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Fig. 3 SEM analysis of CS
microparticles chelated with
BaCl, a chelated with 0.2 %
BaCl, and without drug (CS—
CMC-B1), b chelated with

0.2 % BaCl, and loaded with
drug (CS-CMC-CUR-B1),

¢ chelated with 0.4 % BaCl, and
without drug (CS-CMC-B2),

d chelated with 0.4 % BaCl,
and loaded with drug (CS-
CMC-CUR-B2), e chelated
with 0.6 % BaCl, and without
drug (CS-CMC-B3), f chelated
with 0.6 % BaCl, and loaded
with drug (CS-CMC-CUR-B3)

as follows: 10 mg samples of (CS-CMC-B1, CS-CMC-
B2, CS-CMC-B3, CS-CUR-CMC-S1, CS-CUR-CMC-
S2 and CS-CUR-CMC-S3) were separately tied in six
dialysis membranes (AV flat width—32.34 mm, AV
diameter—21.5 mm, capacity approx—3.63 m cm™ ).
They were placed separately in 50 ml of phosphate buffer
solution (pH 6.8) and left at room temperature. 1 ml of
the solution was collected at prescribed time intervals
(i.e., 30, 60, 90, 120, 150, 180 min) from the released
medium. Three samples were taken, and the mean value
and standard error were calculated. Absorbance was read
using UV visible spectrophotometer (Systronics) at
wavelength 425 nm (4,.x of CUR). Graphs were plotted
having time interval in y axis and drug release absorbance
in x axis.

In vitro controlled release studies

Antibacterial activity

To know the bactericidal activity of microcomposites loaded
with CUR, agar well diffusion method was performed (Dima
et al. 2014; Buzia et al. 2015). In this method, Mueller—
Hinton agar plates were swabbed all over with P. aeruginosa
using a sterile swab. Wells were bored, and the different
concentrations of microcomposites were added to the wells.
After 48 h, the zone of clearance was measured and recorded
(Cruickshank 1962). CS microparticles were dissolved in
different solvents like water, ethanol, phosphate buffer sal-
ine (PBS pH 6) and acetic acid at the concentration of
1 mg ml~" and used to study the drug release kinetics.

pjellae ¢llodl ay .
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Fig. 4 SEM analysis of CS
microparticles chelated with
TPP a chelated with 0.2 % TPP
and without drug (CS-CMC-
S1), b chelated with 0.2 % TPP
and loaded with drug (CS—
CMC-CUR-S1), ¢ chelated
with 0.4 % TPP and without
drug (CS-CMC-S2), d chelated
with 0.4 % TPP and loaded with
drug (CS-CMC-CUR-S2),

e chelated with 0.6 % TPP and
without drug (CS-CMC-S3),

f chelated with 0.6 % TPP and
loaded with drug (CS-CMC-
CUR-S3)

Results and discussion

Fourier transfer infrared spectroscopy (FTIR)
analysis

FTIR analysis was carried out to confirm the presence of
microcomposites and encapsulation of CUR. The FTIR
spectra of CUR-loaded and unloaded microcomposites are
shown in Figs. 1 and 2. The characteristic peaks for CS—
CMC-S1, CS-CMC-S2, CS-CMC-S3, CS-CMC-BI,

Ll cllol .
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CS-CMC-B2 and CS-CMC-B3 were observed at
1633,1636,1636,1653,1636,1636 cm™' which shows the
presence of amide bonds representing the structure of N-
acetylglucosamine (Parize et al. 2012). The C-N stretching
vibration peaks for CS and CMC were observed at 1382,
1384,1384, 1376, 1382 and 1383 cm~! for all carrier
samples CS-CMC-S1, CS-CMC-S2, CS-CMC-S3, CS-
CMC-B1, CS-CMC-B2 and CS-CMC-B3, respectively.
FTIR of pure TPP showed -characteristic bands at
1206-1215 (P-O stretching), 1135-1157 (symmetric and



Appl Nanosci (2016) 6:1219-1231

1225

Fig. 5 Encapsulation efficiency
of CUR on microparticles
chelated with different
concentration of BaCl,

Fig. 6 Encapsulation efficiency
of CUR on microparticles
chelated with different
concentration of TPP

Fig. 7 UV-spectrophotometer
analysis of microparticles
chelated with barium chloride
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Fig. 8 UV-spectrophotometer
analysis of microparticles
chelated with TPP
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Fig. 9 Antibacterial activity of
CUR on Pseudomonas
aeruginosa using water as
solvent. a chelated with 0.2 %
BaCl, and loaded with drug
(CS-CMC-CUR-B1),

b chelated with 0.4 % BaCl,
and loaded with drug (CS-
CMC-CUR-B2), ¢ chelated
with 0.6 % BaCl, and loaded
with drug (CS-CMC-CUR-
B3). d Chelated with 0.2 % TPP
and loaded with drug (CS-
CMC-CUR-S1), e chelated
with 0.4 % TPP and loaded with
drug (CS-CMC-CUR-S2),

f chelated with 0.6 % TPP and
loaded with drug (CS-CMC-
CUR-S3)

asymmetric stretching vibration of the PO, groups),
1090-1115 (symmetric and asymmetric stretching vibra-
tion of the PO; groups) and 880-895 cm™' (P-O-P
asymmetric stretching) (Mi et al. 1999; Martins et al. 2012)
(Fig. 1a, c, e). The C=0 frequency was observed next to
amide bond stretching which ranges from 1640 to
1650 cm™'. A broad trough was observed at 3448, 3446,
3446, 3422, 3446 and 3422 cm™' which shows the pres-
ence of either carbonyl or hydroxyl groups. The C-H peak
of CS was observed in all the drug-loaded and unloaded
microcomposites at 2922, 2922, 2922, 2853, 2928, 2923,
2930, 2923, 2922, 2923, 2922, 2928 cm™' (Figs. 1, 2).
After CUR is loaded, the hydroxyl group peaks are 3421,
3421, 3421, 3422, 3421 and 3448 cm™! for composites
CS-CUR-CMC-S1, CS-CUR-CMC-S2, CS-CUR-
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CMC-S3, CS-CUR-CMC-B1, CS-CUR-CMC-B2 and
CS-CUR-CMC-B3 (Figs. 1b, d, f, 2b, d, f). The amine
peak of the encapsulated polymer was observed at 1636,
1636, 1628, 1636, 1628 and 1605 cm™' for CS—-CUR-
CMC-S1, S2, S3, B1, B2 and B3, respectively (Figs. 1b, d,
f, 2b, d, f). C=0 stretching was observed at 1653, 1653,
1654, 1653 and 1627 cm™"' for CUR microcomposites. The
characteristic peaks of OCH3 for the presence of CUR
were observed at 1153 cm™' for all the samples except
CS-CUR-CMC-B3 in which it was found to be at
1161 cm~!. C-N stretching was observed at 1384, 1383,
1384, 1383, 1383 and 1386 cm ™! for microcomposites CS—
CUR-CMC-S1, CS-CUR-CMC-S2, CS-CUR-CMC-S3,
CS-CUR-CMC-B1, CS-CUR-CMC-B2 and CS-CUR-
CMC-B3, respectively (Figs. 1b, d, f, 2b, d, f).
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Fig. 10 Antibacterial activity
of CUR on Pseudomonas
aeruginosa using ethanol as
solvent. a chelated with 0.2 %
BaCl, and loaded with drug
(CS-CMC-CUR-B1),

b chelated with 0.4 % BaCl,
and loaded with drug (CS-
CMC-CUR-B2), ¢ chelated
with 0.6 % BaCl, and loaded
with drug (CS-CMC-CUR-
B3). d chelated with 0.2 % TPP
and loaded with drug (CS-
CMC-CUR-S1), e chelated
with 0.4 % TPP and loaded with
drug (CS-CMC-CUR-S2),

f chelated with 0.6 % TPP and
loaded with drug (CS-CMC-
CUR-S3)

Fig. 11 Antibacterial activity
of CUR on Pseudomonas
aeruginosa using PBS as
solvent. a chelated with 0.2 %
BaCl, and loaded with drug
(CS-CMC-CUR-B1),

b chelated with 0.4 % BaCl,
and loaded with drug (CS-
CMC-CUR-B2), ¢ chelated
with 0.6 % BaCl, and loaded
with drug (CS-CMC-CUR-
B3). d Chelated with 0.2 % TPP
and loaded with drug (CS—
CMC-CUR-S1), e chelated
with 0.4 % TPP and loaded with
drug (CS-CMC-CUR-S2),

f chelated with 0.6 % TPP and
loaded with drug (CS-CMC-
CUR-S3)

Scanning electron microscopy (SEM) analysis

SEM confirmed the surface morphology of microparti-
cles chelated with barium chloride, i.e., both the CS—
CMC-B1 and CS-CMC-CUR-B1 were irregular to rod
shaped, but CS-CMC-B2, CS-CMC-B3, CS-CMC-
CUR-B2 and CS-CMC-CUR-B3 were spherical and
irregular. Size of all the composites was 1-5 pm; some
of the particles were even smaller than 1 pm (Fig. 3).
Surface morphology of microparticles chelated with
TPP, i.e., CS-CMC-S1 showed that there were
approximately uniform spheres (Fig. 4a), and others
CS-CMC-S2, CS—-CMC-S3 were found to be irregular

to rod shaped (Fig. 4b, c). SEM analysis of CS—-CUR-
CMC-S1, CS-CUR-CMC-S2, and CS-CUR-CMC-S3
showed that they were fluffy in appearance, and smooth,
irregular in shape (Fig. 4b, d, f). TPP concentration
might have influenced the shape variations. Martins
et al. (2012) found that CS/TPP molar ratio at pH 5
favored the formation of more compacted particles,
whereas CS/TPP molar ratio at pH 2 did not favor the
formation of small particles as well as those formed
were irregularly shaped large clusters. Therefore, the
CS/TPP ratio and the pH clearly influenced the size and
porosity of CS/TPP particles. They also found the CS/
TPP particles to have irregular shapes.
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Fig. 12 Antibacterial activity
of CUR on Pseudomonas
aeruginosa using acetic acid as
solvent. a chelated with 0.2 %
BaCl, and loaded with drug
(CS-CMC-CUR-B1),

b chelated with 0.4 % BaCl,
and loaded with drug (CS-
CMC-CUR-B2), ¢ chelated
with 0.6 % BaCl, and loaded
with drug (CS-CMC-CUR-
B3). d chelated with 0.2 % TPP
and loaded with drug (CS-
CMC-CUR-S1), e chelated
with 0.4 % TPP and loaded with
drug (CS-CMC-CUR-S2),

f chelated with 0.6 % TPP and
loaded with drug (CS-CMC-
CUR-S3)

Table 1 Antibacterial activity of CUR against Pseudomonas aeruginosa using water as a solvent

Type of microparticles Positive control Negative control

Zone of inhibition at various Concentration (cm)

20 pl 40 pl 60 pl 80 ul
CS-CUR-CMC-B1 —ve —ve —ve —ve —ve —ve
CS-CUR-CMC-B2 —ve —ve —ve —ve —ve —ve
CS-CUR-CMC-B3 —ve —ve —ve —ve —ve —ve
CS-CUR-CMC-S1 —ve —ve —ve —ve —ve —ve
CS-CUR-CMC-S2 —ve —ve —ve —ve —ve —ve
CS-CUR-CMC-S3 —ve —ve —ve —ve —ve —ve
—ve negative
Table 2 Antibacterial activity of CUR against Pseudomonas aeruginosa using ethanol as solvent
Type of microparticles Positive control Negative control Zone of inhibition at various Concentration (cm)

20 pl 40 pl 60 pl 80 ul
CS-CUR-CMC-B1 —ve —ve —ve —ve —ve —ve
CS-CUR-CMC-B2 —ve —ve —ve —ve —ve —ve
CS-CUR-CMC-B3 —ve —ve —ve —ve —ve —ve
CS-CUR-CMC-S1 —ve —ve —ve —ve —ve —ve
CS—-CUR-CMC-S2 —ve —ve —ve —ve —ve —ve
CS-CUR-CMC-S3 —ve —ve —ve —ve —ve —ve

—ve negative

Encapsulation efficiency

From Figs. 5 and 6, the encapsulation of CUR in all the
composites was increasing with increase in time. CUR, a
hydrophobic drug encapsulation and stabilization is influ-
enced by cross-linking agents. CS—-CMC-S2 and CS-

Lislase ¢llal ay .
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CMC-S3 microcarriers showed a faster encapsulation than
others. The initial concentration of CUR also plays an
important role in the encapsulation efficiency of carriers.
TPP cross-linked with CS-CMC carriers have shown a
higher encapsulation efficiency than other barium chloride
cross-linked carriers, because particles are cleaved
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Table 3 Antibacterial activity of CUR against Pseudomonas aeruginosa using phosphate buffer solution as solvent
Type of microparticles Positive control Negative control Zone of inhibition at various concentration (cm)

20 wl 40 wl 60 pl 80 ul
CS-CUR-CMC-B1 1.6 —ve —ve —ve —ve 1.3
CS-CUR-CMC-B2 1.2 —ve —ve —ve —ve 0.9
CS-CUR-CMC-B3 1.6 —ve —ve —ve —ve —ve
CS-CUR-CMC-S1 14 —ve —ve —ve —ve —ve
CS—-CUR-CMC-S2 1.6 —ve —ve —ve 0.9 1.1
CS-CUR-CMC-S3 1.6 —ve —ve —ve 1 1.2
—ve negative
Table 4 Antibacterial activity of CUR against Pseudomonas aeruginosa using acetic acid as solvent
Type of microparticles Positive control Negative control Zone of inhibition at various concentration (cm)

20 pl 40 pl 60 pl 80 ul
CS-CUR-CMC-B1 35 —ve 22 2.5 2.8 3
CS-CUR-CMC-B2 29 —ve 1.5 1.8 22 2.5
CS-CUR-CMC-B3 35 —ve 1.8 2.5 3 32
CS—-CUR-CMC-S1 35 —ve 2 2.5 2.7 3
CS-CUR-CMC-S2 32 —ve 1.2 22 2.1 2.8
CS—-CUR-CMC-S3 35 —ve 1.3 22 2.6 2.7

—ve negative

regularly, and without aggregation, when CUR enter into
carriers, it easily catches and binds. It is reported that
encapsulation efficiency of the nanoparticles was affected
by increasing the TPP concentration (Zhang et al. 2010),
but in this study, good encapsulation was found with higher
concentration of TPP.

In vitro drug release Kinetics

Drug release kinetics of drug-epitomized microcarriers was
studied at pH 6.8 in phosphate buffer by dialysis membrane
technique. The release kinetics of barium chloride is dif-
ferent for each concentration. In the plot of CS—-CUR-
CMC-B1, higher amount of drug is released in 30 min and
steeps down at 90 min and gradual rise in release of drug
reaches at 180 min. In the plot of CS—-CUR-CMC-B2,
more amount of drug is released at 60 min, and drug
release plateaued till 180 min. CS—-CUR-CMC-B3 has
steady release of drug till 120 min, and more amount of
drug is released at 150 min (Fig. 7). The plots of CS—
CUR-CMC-S1 and CS-CUR-CMC-S2 showed similar
kind of drug release kinetics. More amount of drug is
released in first 20 min, and it steeps down in next 40 min,
and the graph reaches steady state till 180 min, and that of
CS—-CUR-CMC-S3 shows steady release in drug till
120 min and there was a sharp peak at 150 min which
reveals that there is more amount of drug released at

150 min (Fig. 8). Overall, drug release kinetic study
reveals that CS—-CUR-CMC-B3 holds drug for more time
and gradually releases it. Gradually, CUR released from
the carrier, 25 % of CUR release took more than 70 min,
and then, 25-60 % of CUR released within 15 min. This is
due to the hydration of composites and diffuses, creates
voids by swelling of the polymers, and more number of
positively charged amines present in CS, there is less
possibility of penetration of acidic media and, thereby,
gradual release of CUR from CS-CMC carriers
(Mukhopadhyay et al. 2014). Bisht et al. (2007) found
nanoparticle-encapsulated formulation of CUR—nanocur-
cumin—utilizing the micellar aggregates of cross-linked
and random copolymers of N-isopropylacrylamide
(NIPAAM), with N-vinyl-2-pyrrolidone (VP) and
poly(ethyleneglycol)monoacrylate (PEG-A) to disperse in
aqueous media than free CUR (Figs. 9, 10, 11, 12).

In vitro controlled release studies

No antibacterial activity was observed when water and
ethanol were used as solvent in case of microcarriers chelated
with TPP and barium chloride (Tables 1, 2). This is due to the
inability of the solvent to dissolve the CS microcomposites.
When phosphate buffer solution (pH 6) was used as a solvent,
zones of inhibition of 1.3 and 1.2 cm were found in CS—
CUR-CMC-B1 and CS-CUR-CMC-S3 composites,
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respectively; it means that pH 6 favors the release of CS
microcomposites (Table 3). Even acetic acid showed the
maximum zone of inhibition in all the microcomposites
(Table 4); the reason must be that it dissolves the CS better
than the other solvents used and favors the better release of the
drug encapsulated. Buzia et al. (2015) found CS TPP
microspheres loaded with vancomycin to be effective against
Streptococcus pyogenes and Streptococcus faecalis and also
suggested it for oral delivery of vancomycin.

Conclusion

Microcarriers were synthesized utilizing biopolymers and
chelating agents, and the produced microcarriers were
epitomized with CUR. Microcarriers with and without
encapsulated CUR were characterized using SEM and
FTIR. SEM analysis studies showed that barium chloride
surface morphology is likely smooth rod to spherical in
shape (size of 1-10 pm) and that of TPP was found to be
irregular to spheres. FTIR shows all the functional groups
related to CMC, CS and CUR. The TPP cross-linked with
CS—-CMC carriers have higher encapsulation efficiency
than barium chloride. In drug release kinetics study, it was
observed that CS-CUR-CMC-B3 (0.6 % barium chloride)
was good at holding the drug for long time and steady
release of drug. While studying antimicrobial activity
against P. aeruginosa, no activity was observed when
ethanol and water were taken as a solvent for CUR. When
phosphate buffer solution was used as a solvent, the max-
imum zone of inhibition was observed in CS-CUR-CMC-
B1, and the activity was seen only in the highest concen-
tration. Antimicrobial activity showed that all drug-en-
capsulated microcarriers, when acetic acid was used as
solvent, showed activity in all concentrations, and 0.6 %
barium chloride showed maximum zone.
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