Skip to main content

Advertisement

Log in

The strategic role of 15N in quantifying the contribution of endophytic N2 fixation to the N nutrition of non-legumes

  • Review Article
  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Methods based on the use of the stable isotope 15N have been used to confirm active endophytic biological N2 fixation (BNF) in non-legumes, to obtain quantitative estimates of the proportion of plant N obtained from the atmosphere (P atm), and to assess the response of plants to inoculation with diazotrophic bacteria. The purpose of this review is to describe these methods, the assumptions on which they are based, the information that they provide and the situations where they are most appropriately used. The review will concentrate mainly on the literature published during the past 25 years, which follows on from an earlier review by the author.The host range of endophytic BNF is much wider than previously known and now includes cereals, forages, industrial crops, fruits, vegetables and woody forest species. Many new species of diazotrophs that inhabit non-legumes have been identified. The experimental scales range from in vitro studies to glasshouse and field investigations, and include the direct 15N2 technique and indirect 15N enrichment or 15N natural abundance methods. All 15N methods are yield-independent and the indirect methods can provide an assessment of P atm over a plant’s life cycle. There is continuing interest in quantifying endophytic BNF as evidenced by documented studies in 22 countries worldwide since 1991. Estimates of P atm varied across species, cultivars, inoculants, experimental scale and environmental-edaphic conditions, from low (< 15 %), to moderate (15–30 %) to high (> 30 %) values. High estimates were most often obtained under optimal ambient conditions. Relatively few experiments have been conducted in field settings, but there is convincing evidence based on 15N and N balance studies that some Brazilian sugar cane cultivars can contribute in excess of 40 kg N ha−1 yr.−1 via endophytic BNF. 15N-based estimates of P atm are essential in order to identify if a positive yield response to inoculation is due to enhanced BNF or to additional uptake of soil N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeysingha NS, Weerarathne CS (2010) A preliminary study on quantification of biological nitrogen fixation in sugarcane grown in Sevanagala in Sri Lanka. J Natl Sci Found Sri Lanka 38:207–210

    CAS  Google Scholar 

  • Alexander DB, Zuberer DA (1989) 15N2 fixation by bacteria associated with maize roots at a low partial O2 pressure. Appl Environ Microbiol 55:1748–1753

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amir HG, Shamsuddin ZH, Halimi MS, Ramlan MF, Marziah M (1999) Potential use of rhizobacteria for sustainable oil palm seedling production. Malays J Soil Sci 3:39–50

    Google Scholar 

  • Amir HG, Shamsuddin ZH, Halimi MS, Ramlan MF, Marziah M (2002) N2 fixation, plant growth enhancement and root-surface colonization by rhizobacteria in association with oil palm plantlets under in vitro conditions. Malays J Soil Sci 6:75–82

    Google Scholar 

  • Amir HG, Shamsuddin ZH, Halimi MS, Ramlan MF, Marziah M (2003) N2 fixation, nutrient accumulation and plant growth promotion by rhizobacteria in association with oil palm seedlings. Pak J Biol Sci 6:1269–1272

    Article  Google Scholar 

  • Anand R, Chanway C (2013) N2-fixation and growth promotion in cedar colonized by an endophytic strain of Paenibacillus polymyxa. Biol Fertil Soils 49:235–239

    Article  CAS  Google Scholar 

  • Anand R, Grayston S, Chanway C (2013) N2-fixation and seedling growth promotion of lodgepole pine by endophytic Paenibacillus polymyxa. Microb Ecol 66:369–374

    Article  CAS  PubMed  Google Scholar 

  • Ando S, Meunchang S, Wadisirisuk P, Yoneyama T (2000) Estimation of nitrogen input by N2 fixation to field-grown pineapples in Thailand. Acta Hortic 529:203–210

    Article  CAS  Google Scholar 

  • Andrews M, James EK, Cummings SP, Zavalin AA, Vinogradova LV, McKenzie BA (2003) Use of nitrogen fixing bacteria inoculants as a substitute for nitrogen fertiliser for dryland graminaceous crops: progress made, mechanisms of action and future potential. Symbiosis 35:209–229

    CAS  Google Scholar 

  • Araújo E d O, Martins MR, Vitorino ACT, Mercante FM, Urquiaga SS (2015) Effect of nitrogen fertilization associated with diazotrophic bacteria inoculation on nitrogen use efficiency and its biological fixation by corn determined using 15N. Afr J Microbiol Res 9:643–650

    Article  CAS  Google Scholar 

  • Asis CA Jr., Kubota M, Ohta H, Arima Y, Ohwaki Y, Yoneyama T, Tsuchiya K, Hayashi N, Nakanishi Y, Akao S (2002) Estimation of the nitrogen fixation by sugarcane cultivar NiF-8 using 15N dilution and natural 15N abundance techniques. Soil Sci Plant Nutr 48:283–285

    Article  Google Scholar 

  • Bairamov LE, Vinogradova LV, Zavalin AA (2001) Nitrogen nutrition and productivity of barley as conditioned by the application of associative diazotrophs. Asp Appl Biol 63:135–139

    Google Scholar 

  • Bal A, Chanway CP (2012a) Evidence of nitrogen fixation in lodgepole pine inoculated with diazotrophic Paenibacillus polymyxa. Botany 90:891–896

    Article  CAS  Google Scholar 

  • Bal A, Chanway CP (2012b) 15N foliar dilution of western red cedar in response to seed inoculation with diazotrophic Paenibacillus polymyxa. Biol Fertil Soils 48:967–971

    Article  Google Scholar 

  • Baldani VLD, Baldani JI, Döbereiner J (2000) Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp. Biol Fertil Soils 30:485–491

    Article  Google Scholar 

  • Baptista RB, de Morais RF, Leite JM, Schultz N, Alves BJR, Boddey RM, Urquiaga S (2014) Variations in the 15N natural abundance of plant-available N with soil depth: their influence on estimates of contributions of biological N2 fixation to sugar cane. Appl Soil Ecol 73:124–129

    Article  Google Scholar 

  • Bei Q, Liu G, Tang H, Cadisch G, Rasche F, Xie Z (2013) Heterotrophic and phototrophic 15N2 fixation and distribution of fixed 15N in a flooded rice–soil system. Soil Biol Biochem 59:25–31

    Article  CAS  Google Scholar 

  • Biggs IM, Stewart GR, Wilson JR, Critchley C (2002) 15N natural abundance studies in Australian commercial sugarcane. Plant Soil 238:21–30

    Article  CAS  Google Scholar 

  • Boddey RM, de Oliveira OC, Urquiaga S, Reis VM, de Olivares EL, Baldani VLD, Döbereiner J (1995) Biological nitrogen fixation associated with sugar cane and rice: contributions and prospects for improvement. Plant Soil 174:195–209

    Article  CAS  Google Scholar 

  • Boddey RM, Polidoro JC, Resende AS, Alves BJR, Urquiaga S (2001) Use of the15N natural abundance technique for the quantification of the contribution of N2 fixation to sugar cane and other grasses. Funct Plant Biol 28:889–895

    Article  Google Scholar 

  • Bremer E, Janzen HH, Gilbertson C (1995) Evidence against associative N2 fixation as a significant N source in long-term wheat plots. Plant Soil 175:13–19

    Article  CAS  Google Scholar 

  • Chalk PM (1991) The contribution of associative and symbiotic nitrogen fixation to the nitrogen nutrition of non-legumes. Plant Soil 132:29–39

    Article  CAS  Google Scholar 

  • Chalk PM, Inácio CT, Balieiro FC, Rouws JRC (2016) Do techniques based on 15N enrichment and 15N natural abundance give consistent estimates of the symbiotic dependence of N2-fixing plants? Plant Soil 399:415–426

    Article  CAS  Google Scholar 

  • Chanway CP, Holl FB (1991) Biomass increase and associative nitrogen fixation of mycorrhizal Pinus contorta seedlings inoculated with a plant growth promoting Bacillus strain. Can J Bot 69:507–511

    Article  CAS  Google Scholar 

  • Christiansen-Weniger C, van Veen JA (1991) NH4 +-excreting Azospirillum brasilense mutants enhance the nitrogen supply of a wheat host. Appl Environ Microbiol 57:3006–3012

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christiansen-Weniger C, Groneman AF, van Veen JA (1992) Associative N2 fixation and root exudation of organic acids from wheat cultivars of different aluminium tolerance. Plant Soil 139:167–174

    Article  CAS  Google Scholar 

  • de Carvalho ALV, Alves BJR, Baldani VLD, Reis VM (2008) Application of 15N natural abundance technique for evaluating biological nitrogen fixation in oil palm ecotypes at nursery stage in pot experiments and at mature plantation sites. Plant Soil 302:71–78

    Article  CAS  Google Scholar 

  • de Morais RF, Quesada DM, Reis VM, Urquiaga S, Alves BJR, Boddey RM (2012) Contribution of biological nitrogen fixation to elephant grass (Pennisetum purpureum Schum.). Plant Soil 356:23–34

    Article  CAS  Google Scholar 

  • De-Polli H, Matsui E, Döbereiner J, Salati E (1977) Confirmation of nitrogen fixation in two tropical grasses by 15N2 incorporation. Soil Biol Biochem 9:119–123

    Article  CAS  Google Scholar 

  • Eckert B, Weber OB, Kirchhof G, Halbritter A, Stoffels M, Hartmann A (2001) Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus. Int J Syst Evol Microbiol 51:17–26

    Article  CAS  PubMed  Google Scholar 

  • Ela SW, Anderson MA, Brill WJ (1982) Screeiing and selection of maize to enhance associative bacterial nitrogen fixation. Plant Physiol 70:1564–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elbeltagy A, Nishioka K, Sato T, Suzuki H, Ye B, Hamada T, Isawa T, Mitsui H, Minamisawa K (2001) Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl Environ Microbiol 67:5285–5293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Komy HMA, Moharram TMM, Safwat MSA (1998) Effect of Azospirillum inoculation on growth and N2 fixation of maize subjected to different levels of FYM using 15N-dilution method. In: Malik KA, Mirza MS, Ladha JK (eds) Nitrogen fixation with Non-legumes. Springer, Netherlands, pp. 49–59

    Chapter  Google Scholar 

  • Flores P, Fenoll J, Hellin P, Aparico-Teio P (2010) Isotopic evidence of significant assimilation of atmospheric-derived nitrogen fixed by Azospirillum brasilense co-inoculated with phosphate-solubilising Pantoea dispersa in pepper seedling. Appl Soil Ecol 46:335–340

    Article  Google Scholar 

  • Flores P, Hellin P, Lopez A, Fenoll J (2012) Combined effect of nitrogen fertilization and plant growth-promoting bacteria on growth and nitrogen utilization by lettuce plants. Acta Hortic 936:335–340

    Article  Google Scholar 

  • Garcia de Salamone IE, Döbereiner J, Urquiaga S, Boddey RM (1996) Biological nitrogen fixation in Azospirillum strain-maize genotype associations as evaluated by the 15N isotope dilution technique. Biol Fertil Soils 23:249–256

    Article  CAS  Google Scholar 

  • Giller KE, Merckx R (2003) Exploring the boundaries of N2-fixation in cereals and grasses: An hypothetical and experimental framework. Symbiosis 35:3–17

    CAS  Google Scholar 

  • Giller KE, Day JM, Dart PJ, Wani SP (1984) A method for measuring the transfer of fixed nitrogen from free-living bacteria to higher plants using 15N2. J Microbiol Methods 2:307–316

    Article  Google Scholar 

  • Giller KE, Wani SP, Day JM (1986) Use of isotope dilution to measure nitrogen fixation associated with the roots of sorghum and millet genotypes. Plant Soil 90:255–263

    Article  CAS  Google Scholar 

  • Giller KE, Wani SP, Day JM, Dart PJ (1988) Short-term measurements of uptake of nitrogen fixed in the rhizospheres of sorghum (Sorghum bicolor) and millet (Pennisetum americanum). Biol Fertil Soils 7:11–15

    Article  Google Scholar 

  • Govindarajan M, Balandreau J, Kwon S-W, Weon H-Y, Lakshminarasimhan C (2008) Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microb Ecol 55:21–37

    Article  PubMed  Google Scholar 

  • Gyaneshwar P, James EK, Reddy PM, Ladha JK (2002) Herbaspirillum colonization increases growth and nitrogen accumulation in aluminium-tolerant rice varieties. New Phytol 154:131–145

    Article  CAS  Google Scholar 

  • Haahtela K, Kari K (1986) The role of root-associated Klebsiella pneumoniae in the nitrogen nutrition of Poa pratensis and Triticum aestivum as estimated by the method of 15N isotope dilution. Plant Soil 90:245–254

    Article  Google Scholar 

  • Hamdia MA, El-Komy HM (1997/98) Effect of salinity, gibberellic acid and Azospirillum inoculation on growth and nitrogen uptake of Zea mays. Biol Plant 40:109–120

  • Hoefsloot G, Termorshuizen AJ, Watt DA, Cramer MD (2005) Biological nitrogen fixation is not a major contributor to the nitrogen demand of a commercially grown south African sugarcane cultivar. Plant Soil 277:85–96

    Article  CAS  Google Scholar 

  • Hurek T, Handley LL, Reinhold-Hurek B, Piché Y (2002) Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Mol Plant-Microbe Interact 15:233–242

    Article  CAS  PubMed  Google Scholar 

  • Iniguez AL, Dong Y, Triplett EW (2004) Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Mol Plant-Microbe Interact 17:1078–1085

    Article  CAS  PubMed  Google Scholar 

  • Ito O, Cabrera D, Watanabe I (1980) Fixation of dinitrogen-15 associated with rice plants. Appl Environ Microbiol 39:554–558

    CAS  PubMed  PubMed Central  Google Scholar 

  • James EK (2000) Nitrogen fixation in endophytic and associative symbiosis. Field Crop Res 65:197–209

    Article  Google Scholar 

  • James EK, Baldani JI (2012) The role of biological nitrogen fixation by non-legumes in the sustainable production of food and biofuels. Plant Soil 356:1–3

    Article  CAS  Google Scholar 

  • James EK, Gyaneshwar P, Mathan N, Barraquio WL, Reddy PM, Iannetta PPM, Olivares FL, Ladha JK (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant-Microbe Interact 15:894–906

    Article  CAS  PubMed  Google Scholar 

  • Kirchhof G, Eckert B, Stoffels M, Baldani JI, Reis VM, Hartmann A (2001) Herbaspirillum frisingense sp. nov., a new nitrogen-fixing bacterial species that occurs in C4-fibre plants. Int J Syst Evol Microbiol 51:157–168

    Article  CAS  PubMed  Google Scholar 

  • Knoth JL, Kim S-H, Ettl GJ, Doty SL (2014) Biological nitrogen fixation and biomass accumulation within poplar clones as a result of inoculations with diazotrophic endophyte consortia. New Phytol 201:599–609

    Article  CAS  PubMed  Google Scholar 

  • Ladha JK, Tirol-Padre A, Reddy CK, Cassman KG, Verma S, Powlson DS, van Kessel C, Richter D d B, Chakraborty D, Pathak H (2016) Global nitrogen budgets in cereals: A 50-year assessment for maize, rice, and wheat production systems. Sci Rep 6:19355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee K-K, Wani SP, Yoneyama T, Trimurtulu N, Harikrishnan R (1994) Asociative N2-fixation in pearl millet and sorghum: levels and response to inoculation. Soil Sci Plant Nutr 40:477–484

    Article  Google Scholar 

  • Li Y-R, Zhou X-Z, Yang L-T (2015) Biological nitrogen fixation in sugarcane and nitrogen transfer from sugarcane to cassava in an intercropping system. Int J Soil Sci Nat 6:214–218

    CAS  Google Scholar 

  • Lima E, Boddey RM, Döbereiner J (1987) Quantification of biological nitrogen fixation associated with sugar cane using a 15N aided nitrogen balance. Soil Biol Biochem 19:165–170

    Article  CAS  Google Scholar 

  • Lin L, Guo W, Xing Y, Zhang X, Li Z, Hu C, Li S, Li Y, An Q (2012a) The actinobacterium Microbacterium sp. 16SH accepts pBBR1-based pPROBE vectors, forms biofilms, invades roots, and fixes N2 associated with micropropagated sugarcane plants. Appl Microbiol Biotechnol 93:1185–1195

    Article  CAS  PubMed  Google Scholar 

  • Lin L, Li Z, Hu C, Zhang X, Chang S, Yang L, Li Y, An Q (2012b) Plant growth-promoting nitrogen-fixing Enterobacteria are in association with sugarcane plants growing in Guangxi, China. Microbes Environ 27:391–398

    Article  PubMed  PubMed Central  Google Scholar 

  • Malarvizhi P, Ladha JK (1999) Influence of available nitrogen and rice genotype on associative dinitrogen fixation. Soil Sci Soc Am J 63:93–99

    Article  CAS  Google Scholar 

  • Malik KA, Bilal R, Mehnaz S, Rasul G, Mirza MS, Ali S (1997) Association of nitrogen-fixing, plant-growth-promoting rhizobacteria (PGPR) with kallar grass and rice. Plant Soil 194:37–44

    Article  CAS  Google Scholar 

  • Meng X, Yan D, Long X, Wang C, Liu Z, Rengel Z (2014) Colonization by endophytic Ochrobactrum anthropi Mn1 promotes growth of Jerusalem artichoke. Microb Biotechnol 7:601–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mia MAB, Shamsuddin ZH, Wahab Z, Mahmood M (2007) Associative nitrogen fixation by Azospirillum and Bacillus spp. in bananas. InfoMusa 16:11–15

    Google Scholar 

  • Momose A, Ohtake N, Sueyoshi K, Sato T, Nakanishi Y, Akao S, Ohyama T (2009) Nitrogen fixation and translocation in young sugarcane (Saccharum officinarum L.) plants associated with endophytic nitrogen-fixing bacteria. Microbes Environ 24:224–230

    Article  PubMed  Google Scholar 

  • Montañez A, Sicardi M (2013) Effects of inoculation on growth promotion and biological nitrogen fixation in maize (Zea mays L.) under greenhouse and field conditions. Basic Res J Agric Sci Rev 2:102–110

    Google Scholar 

  • Montañez A, Abreu C, Gill PR, Hardarson G, Sicardi M (2009) Biological nitrogen fixation in maize (Zea mays L.) by 15N isotope-dilution and identification of associated culturable diazotrophs. Biol Fertil Soils 45:253–263

    Article  CAS  Google Scholar 

  • Naher UA, Radziah O, Shamsuddin ZH, Halimi MS, Razi MI, Rahim KA (2011) Effect of root exuded specific sugars on biological nitrogen fixation and growth promotion in rice (Oryza sativa). Aust J Crop Sci 5:1210–1217

    CAS  Google Scholar 

  • Oliveira ALM, Urquiaga S, Döbereiner J, Baldani JI (2002) The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants. Plant Soil 242:205–215

    Article  CAS  Google Scholar 

  • Paungfoo-Lonhienne C, Lonhienne TGA, Yeoh YK, Webb RI, Lakshmanan P, Chan CX, Lim P-E, Ragan MA, Schmidt S, Hugenholtz P (2014) A new species of Burkholderia isolated from sugarcane roots promotes plant growth. Microb Biotechnol 7:142–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng G, Wang H, Zhang G, Hou W, Liu Y, Wang ET, Tan Z (2006) Azospirillum melinis sp. nov., a group of diazotrophs isolated from tropical molasses grass. Int J Syst Evol Microbiol 56:1263–1271

    Article  CAS  PubMed  Google Scholar 

  • Puri A, Padda KP, Chanway CP (2015) Can a diazotrophic endophyte originally isolated from lodgepole pine colonize an agricultural crop (corn) and promote its growth? Soil Biol Biochem 89:210–216

    Article  CAS  Google Scholar 

  • Puri A, Padda KP, Chanway CP (2016) Evidence of nitrogen fixation and growth promotion in canola (Brassica napus L.) by an endophytic diazotroph Paenibacillus polymyxa P2b-2R. Biol Fertil Soils 52:119–125

    Article  CAS  Google Scholar 

  • Raja P, Uma S, Gopal H, Govindarajan K (2006) Impact of bio inoculants consortium on rice root exudates, biological nitrogen fixation and plant growth. J Biol Sci 6:815–823

    Article  Google Scholar 

  • Reis VM, dos Reis Jr FB, Quesada DM, de Oliveira OCA, Alves BJR, Urquiaga S, Boddey RM (2001) Biological nitrogen fixation associated with tropical pasture grasses. Funct Plant Biol 28:837–844

    Article  Google Scholar 

  • Rennie RJ (1980) 15N-isotope dilution as a measure of dinitrogen fixation by Azospirillum brasilense associated with maize. Can J Bot 58:21–24

    CAS  Google Scholar 

  • Rennie RJ, de Freitas JR, Ruschel AP, Vose PV (1983) 15N isotope dilution to quantify dinitrogen (N2) fixation associated with Canadian and Brazilian wheat. Can J Bot 61:1667–1671

    Article  CAS  Google Scholar 

  • Riggs PJ, Chelius MK, Iniguez AL, Kaeppler SM, Triplett EW (2001) Enhanced maize productivity by inoculation with diazotrophic bacteria. Funct Plant Biol 28:829–836

    Article  Google Scholar 

  • Rodrigues EP, Rodrigues LS, de Oliveira ALM, Baldani VLD, dos Santos Teixeira KR, Urquiaga S, Reis VM (2008) Azospirillum amazonense inoculation: effects on growth, yield and N2 fixation of rice (Oryza sativa L.). Plant Soil 302:249–261

    Article  CAS  Google Scholar 

  • Rothballer M, Schmid M, Hartmann A (2009) Diazotrophic bacterial endophytes in Gramineae and other plants. Microbiol Monogr 8:273–302

    Article  Google Scholar 

  • Ruppel S, Merbach W (1997) Effect of ammonium and nitrate on 15N2-fixation of Azospirillum spp. and Pantoea agglomerans in association with wheat plants. Microbiol Res 152:377–383

    Article  CAS  Google Scholar 

  • Ruschel A, Henis Y, Salati E (1975) Nitrogen-15 tracing of N-fixation with soil grown sugarcane seedlings. Soil Biol Biochem 7:181–182

    Article  CAS  Google Scholar 

  • Ruschel A, Victoria RL, Salati E, Henis Y (1978) Nitrogen fixation in sugarcane (Saccharum officinarum L.). Ecol Bull 26:297–303

    Google Scholar 

  • Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111:743–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sevilla M, Burris RH, Gunapala N, Kennedy C (2001) Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and Nif-mutant strains. Mol Plant-Microbe Interact 14:358–366

    Article  CAS  PubMed  Google Scholar 

  • Shrestha RK, Ladha JK (1996) Genotypic variation in promotion of rice dinitrogen fixation as determined by nitrogen-15 dilution. Soil Sci Soc Am J 60:1815–1821

    Article  CAS  Google Scholar 

  • Stein T, Hayen-Schneg N, Fendrik I (1997) Contribution of BNF by Azoarcus sp. BH72 in Sorghum vulgare. Soil Biol Biochem 29:969–971

    Article  CAS  Google Scholar 

  • Taulé C, Mareque C, Barlocco C, Hackembruch F, Reis VM, Sicardi M, Battistoni F (2012) The contribution of nitrogen fixation to sugarcane (Saccharum officinarum L.), and the identification and characterization of part of the associated diazotrophic bacterial community. Plant Soil 356:35–49

    Article  CAS  Google Scholar 

  • Unkovich M (2013) Isotope discrimination provides new insight into biological nitrogen fixation. New Phytol 198:643–646

    Article  CAS  PubMed  Google Scholar 

  • Urquiaga S, Cruz KHS, Boddey RM (1992) Contribution of nitrogen fixation to sugar cane: 15N and nitrogen balance estimates. Soil Sci Soc Am J 56:105–114

    Article  Google Scholar 

  • Urquiaga S, Xavier RP, de Morais RF, Batista RB, Schultz N, Leite JM, Maia e Sá J, Barbosa KP, de Resende AS, Alves BJR, Boddey RM (2012) Evidence from field nitrogen balance and 15N natural abundance data for the contribution of biological N2 fixation to Brazilian sugarcane varieties. Plant Soil 356:5–21

    Article  CAS  Google Scholar 

  • Van Nieuwenhove C, Merckx R, Van Holm L, Vlassak K (2001) Dinitrogen fixation activity of Azorhizobium caulinodans in the rice (Oryza sativa L.) rhizosphere assessed by nitrogen balance and nitrogen-15 dilution methods. Biol Fertil Soils 33:25–32

    Article  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Warembourg FR (1993) Nitrogen fixation in plant and soil systems. In: Knowles R, Blackburn TH (eds) Nitrogen isotope techniques. Academic Press Inc., San Diego, pp. 127–156

    Google Scholar 

  • Watanabe I, Yoneyama T, Padre B, Ladha JK (1987) Difference in natural abundance of 15N in several rice (Oryza sativa L.) varieties: application for evaluating N2 fixation. Soil Sci Plant Nutr 33:407–415

    Article  CAS  Google Scholar 

  • Wei C-Y, Lin L, Luo L-J, Xing Y-X, Hu C-J, Yang L-T, Li Y-R, An Q (2014) Endophytic nitrogen-fixing Klebsiella variicola strain DX120E promotes sugarcane growth. Biol Fertil Soils 50:657–666

    Article  CAS  Google Scholar 

  • White JF Jr., Crawford H, Torres MS, Mattera R, Irizarry I, Bergen M (2012) A proposed mechanism for nitrogen acquisition by grass seedlings through oxidation of symbiotic bacteria. Symbiosis 57:161–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood CC, Islam N, Ritchie RJ, Kennedy IR (2001) A simplified model for assessing critical parameters during associative 15N2 fixation between Azospirillum and wheat. Funct Plant Biol 28:969–974

    Article  Google Scholar 

  • Yoneyama T, Muraoka T, Kim TH, Dacanay EV, Nakanishi Y (1997) The natural 15N abundance of sugarcane and neighbouring plants in Brazil, the Philippines and Miyako (Japan). Plant Soil 189:239–244

    Article  CAS  Google Scholar 

  • Yoneyama T, Terakado J, Masuda T (1998) Natural abundance of 15N in sweet potato, pumpkin, sorghum and castor bean: possible input of N2-derived nitrogen in sweet potato. Biol Fertil Soils 26:152–154

    Article  CAS  Google Scholar 

  • Yoshida T, Yoneyama T (1980) Atmospheric dinitrogen fixation in the flooded rice rhizosphere as determined by the N-15 isotope technique. Soil Sci Plant Nutr 26:551–559

    Article  CAS  Google Scholar 

  • You C, Zhou F (1989) Non-nodular endorhizospheric nitrogen fixation in wetland rice. Can J Microbiol 35:403–408

    Article  CAS  Google Scholar 

  • Zakria M, Njoloma J, Saeki Y, Akao S (2007) Colonization and nitrogen-fixing ability of Herbaspirillum sp. strain B501 gfp1 and assessment of its growth-promoting ability in cultivated rice. Microbes Environ 22:197–206

    Article  Google Scholar 

  • Zakria M, Udonishi K, Saeki Y, Yamamoto A, Akao S (2008) Infection, multiplication and evaluation of the nitrogen-fixing ability of Herbaspirillum sp. strain B501gfp1 in sugarcane stems inoculated by the vacuum infiltration method. Microbes Environ 23:128–133

    Article  PubMed  Google Scholar 

  • Zakry FAA, Shamsuddin ZH, Abdul Rahim K, Zakaria ZZ, Abdul Rahim A (2012) Inoculation of Bacillus sphaericus UPMB10 to young oil palm and measurement of its uptake of fixed nitrogen using the 15N isotope dilution technique. Microbes Environ 27:257–262

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip M. Chalk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chalk, P.M. The strategic role of 15N in quantifying the contribution of endophytic N2 fixation to the N nutrition of non-legumes. Symbiosis 69, 63–80 (2016). https://doi.org/10.1007/s13199-016-0397-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-016-0397-8

Keywords

Navigation