Skip to main content

Advertisement

Log in

Tolerance to environmental stress by the nitrogen-fixing actinobacterium Frankia and its role in actinorhizal plants adaptation

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Environmental stresses are caused by human activities or natural events. Several of them including salinity, heavy metals, and extreme temperature affect both soil characteristics and plant growth and productivity. Actinorhizal plants are pioneer species that are able to grow in poor soils and improve soil fertility. They are widely used in agroforestry for different purposes including reclamation of degraded and contaminated lands. This capacity is mainly due to the plants forming a nitrogen-fixing symbiosis with actinobacteria known as Frankia. In comparison to uninoculated plants, plants in symbiosis with Frankia have significantly improved plant growth, total biomass, and nitrogen and chlorophyll content which enhance the development of actinorhizal plants and their resistance to abiotic stresses. However, to optimize the adaptation of actinorhizal species to different environments, selection of both symbiotic partners is necessary. Frankia strains vary in their sensitivity and response to stress including salinity, heavy metals, extreme pH and drought. In this paper, we review the response of different Frankia strains to environmental stresses and their role that they play in the adaptation of actinorhizal plants to stressful conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alskog G, Huss-Danell K (1997) Superoxide dismutase, catalase and nitrogenase activities of symbiotic Frankia (Alnus incana) in response to different oxygen tensions. Physiol Plant 99:286–292

    Article  CAS  Google Scholar 

  • Bagnarol E, Popovici J, Alloisio N, et al. (2007) Differential Frankia protein patterns induced by phenolic extracts from Myricaceae seeds. Physiol Plant 130:380–390

    Article  CAS  Google Scholar 

  • Baker D, O’Keefe D (1984) A modified sucrose fractionation procedure for the isolation of frankiae from actinorhizal root nodules and soil samples. Plant Soil 78:23–28

    Article  Google Scholar 

  • Baker E, Tang Y, Chu F, Tisa LS (2015) Molecular responses of Frankia sp. strain QA3 to naphthalene. Can J Microbiol 61:281–292

    Article  CAS  PubMed  Google Scholar 

  • Bassi CA, Benson DR (2007) Growth characteristics of the slow-growing actinobacterium Frankia sp. strain CcI3 on solid media. Physiol Plant 130:391–399

    Article  CAS  Google Scholar 

  • Batista-Santos P, Duro N, Rodrigues AP, et al. (2015) Is salt stress tolerance in Casuarina glauca sieb. ex spreng. associated with its nitrogen-fixing root-nodule symbiosis? An analysis at the photosynthetic level. Plant Physiol Biochem 96:97–109

    Article  CAS  PubMed  Google Scholar 

  • Beauchemin NJ, Furnholm T, Lavenus J, et al. (2012) Casuarina root exudates alter the physiology, surface properties, and plant infectivity of Frankia sp. strain CcI3. Appl Environ Microbiol 78:575–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bélanger P-A, Beaudin J, Roy S (2011a) High-throughput screening of microbial adaptation to environmental stress. J Microbiol Methods 85:92–97

    Article  PubMed  Google Scholar 

  • Bélanger P-A, Bissonnette C, Bernèche-D’Amours A, et al. (2011b) Assessing the adaptability of the actinorhizal symbiosis in the face of environmental change. Environ Exp Bot 74:98–105

    Article  Google Scholar 

  • Bélanger P-A, Bellenger J-P, Roy S (2013) Strong modulation of nutrient distribution in Alnus glutinosa as a function of the actinorhizal symbiosis. Botany 91:218–224

    Article  CAS  Google Scholar 

  • Bélanger P-A, Bellenger J-P, Roy S (2015) Heavy metal stress in alders: tolerance and vulnerability of the actinorhizal symbiosis. Chemosphere 138:300–308

    Article  PubMed  CAS  Google Scholar 

  • Benson DR, Silvester WB (1993) Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev 57:293–319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berry AM, Harriott OT, Moreau RA, et al. (1993) Hopanoid lipids compose the Frankia vesicle envelope, presumptive barrier of oxygen diffusion to nitrogenase. Proc Natl Acad Sci 90:6091–6094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bissonnette C, Fahlman B, Peru KM, et al. (2014) Symbiosis with Frankia sp. benefits the establishment of Alnus viridis ssp. crispa and Alnus incana ssp. rugosa in tailings sand from the Canadian oil sands industry. Ecol Eng 68:167–175

    Article  Google Scholar 

  • Budowski G, Russo R (1997) Nitrogen-fixing trees and nitrogen fixation in sustainable agriculture: research challenges. Soil Biol Biochem 29:767–770

    Article  CAS  Google Scholar 

  • Burggraaf AJP, Shipton WA (1982) Estimates of Frankia growth under various pH and temperature regimes. Plant Soil 69:135–147

    Article  CAS  Google Scholar 

  • Burleigh SH, Dawson JO (1991) Effects of sodium chloride and melibiose on the in vitro growth and sporulation of Frankia strain HFPCcI3 isolated from Casuarina cunninghamiana. Aust J Ecol 16:531–535

  • Burleigh S, Torrey JG (1990) Effectiveness of different Frankia cell types as inocula for the actinorhizal plant Casuarina. Appl Environ Microbiol 56:2565–2567

    PubMed  PubMed Central  Google Scholar 

  • Callaham D, Deltredici P, Torrey JG (1978) Isolation and cultivation in vitro of the actinomycete causing root nodulation in Comptonia. Science 199:899–902

    Article  CAS  PubMed  Google Scholar 

  • Carrasco A, Salyards JR, Berry AM (1995) Studies of two Frankia strains isolated from Trevoa trinervis miers. Plant Soil 171:359–363

    Article  CAS  Google Scholar 

  • Carú M (1993) Characterization of native Frankia strains isolated from Chilean shrubs (Rhamnaceae). Plant Soil 157:137–145

    Google Scholar 

  • Carú M, Cabello A (1997) Isolation and characterization of the symbiotic phenotype of antibiotic-resistant mutantsof Frankia from rhamnaceae. World J Microbiol Biotechnol 14:205–210

    Article  Google Scholar 

  • Carú M, Becerra A, Sepúlveda D, Cabello A (2000) Isolation of infective and effective Frankia strains from root nodules of Alnus acuminata (betulaceae). World J Microbiol Biotechnol 16:647–651

    Article  Google Scholar 

  • Cournoyer B, Normand P (1994) Characterization of a spontaneous thiostrepton-resistant Frankia alni infective isolate using PCR-RFLP of nif and glnII genes. Soil Biol Biochem 26:553–559

    Article  CAS  Google Scholar 

  • Dawson JO, Gibson AH (1987) Sensitivity of selected Frankia isolates from Casuarina, Allocasuarina and North American host plants to sodium chloride. Physiol Plant 70:272–278

    Article  CAS  Google Scholar 

  • Diagne N, Arumugam K, Ngom M, et al (2013) Use of Frankia and actinorhizal plants for degraded lands reclamation. BioMed Research International 948258, 9 pages. doi:10.1155/2013/948258.

  • Diagne N, Ngom M, Djighaly PI, et al. (2015) Remediation of heavy metal-contaminated soils and enhancement of their fertility with actinorhizal plants. Heavy Metal Contamination of Soils. Springer, In, pp. 355–366

    Google Scholar 

  • Diem HG, Dommergues YR (1985) In vitro production of specialized reproductive torulose hyphae by Frankia strain ORS 021001 isolated from Casuarina junghuhniana root nodules. In: Frankia and Actinorhizal Plants. Springer, pp 17–29

  • Diem HG, Gauthier D, Dommergues YR (1982) Isolation of Frankia from nodules of Casuarina equisetifolia. Can J Microbiol 28:526–530

    Article  Google Scholar 

  • Diem HG, Gauthier D, Dommergues Y (1983) An effective strain of Frankia from Casuarina sp. Can J Bot 61:2815–2821

    Article  Google Scholar 

  • Dobritsa SV (1998) Grouping of Frankia strains on the basis of susceptibility to antibiotics, pigment production and host specificity. Int J Syst Bacteriol 48:1265–1275

    Article  CAS  Google Scholar 

  • Dommergues YR (1997) Contribution of actinorhizal plants to tropical soil productivity and rehabilitation. Soil Biol Biochem 29:931–941

    Article  CAS  Google Scholar 

  • Duhoux E, Franche C (2003) Les nodules actinorhiziens de Casuarina. Biofutur 235:45–49

    Google Scholar 

  • Duro N, Batista-Santos P, da Costa M, et al. (2015) The impact of salinity on the symbiosis between Casuarina glauca Sieb. ex Spreng. and N2-fixing Frankia bacteria based on the analysis of Nitrogen and Carbon metabolism. Plant Soil 398:1–11

    Google Scholar 

  • Faure-Raynaud M, Daniere C, Moiroud A, Capellano A (1990) Preliminary characterization of an ineffective Frankia derived from a spontaneously neomycin-resistant strain. Plant Soil 129:165–172

    Article  CAS  Google Scholar 

  • Fauzia YH (1999) Frankia and Rhizobium strains as inoculum for fast growing trees in saline environment. Pak J Bot 31:173–182

    Google Scholar 

  • Fontaine MS, Lancelle SA, Torrey JG (1984) Initiation and ontogeny of vesicles in cultured Frankia sp. strain HFPArI3. J Bacteriol 160:921–927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fontaine MS, Young PH, Torrey JG (1986) Effects of long-term preservation of Frankia strains on infectivity, effectivity, and in vitro nitrogenase activity. Appl Environ Microbiol 51:694–698

    CAS  PubMed  PubMed Central  Google Scholar 

  • Furnholm T, Beauchemin N, Tisa LS (2012) Development of a semi-high-throughput growth assay for the filamentous actinobacteria Frankia. Arch Microbiol 194:13–20

    Article  CAS  PubMed  Google Scholar 

  • Gaur A, Adholeya A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86:528–534

    CAS  Google Scholar 

  • Gauthier D, Diem HG, Dommergues Y (1981) In vitro nitrogen fixation by two actinomycete strains isolated from Casuarina nodules. Appl Environ Microbiol 41:306–308

    CAS  PubMed  PubMed Central  Google Scholar 

  • Girgis MGZ, Ishac YZ, Diem HG, Dommergues YR (1992) Selection of salt tolerant Casuarina glauca and Frankia. Acta Oecol 13:443–451

    Google Scholar 

  • Gomaa AM, Abo-Aba SEM, Awad NS (2008) Isolation, characterization and genetic differentiation of Frankia sp. isolated from ecologically different egyptian locations. Res J Cell Mol Biol 2:6–17

    CAS  Google Scholar 

  • Greer CW, Mehta P, Labelle S, et al. (2005) Remediation and revegetation of tar sands composite tailings containing naphthenic acids and high salt using alder-Frankia symbionts. In: Remediation Technologies symposium proceedings. Banff, Alberta, Canada, p. 11

    Google Scholar 

  • Gtari M, Ghodhbane-Gtari F, Nouioui I, et al. (2015) Cultivating the uncultured: growing the recalcitrant cluster-2 Frankia strains. Nature 5:13112. doi:10.1038/srep13112

    CAS  Google Scholar 

  • Harriott OT, Bourret A (2003) Improving dispersed growth of Frankia using carbopol. In: Frankia Symbiosis. Springer, pp 69–74

  • Huang Y, Benson DR (2012) Growth and development of Frankia spp. strain CcI3 at the single-hypha level in liquid culture. Arch Microbiol 194:21–28

    Article  CAS  PubMed  Google Scholar 

  • Huss-Danell K (1997) Tansley Review No. 93. Actinorhizal symbioses and their N 2 fixation. New Phytol 136:375–405

    Article  CAS  Google Scholar 

  • Huss-Danell K, Winship LJ, Hahlin A-S (1987) Loss and recovery of nitrogenase in Abuts incana nodules exposed to low oxygen and low temperature. Physiol Plant 70:355–360

    Article  CAS  Google Scholar 

  • Hyland BPM (1983) Germination, growth and mineral ion concentrations of Casuarina species under saline conditions. Aust J Bot 31:1–164

    Article  Google Scholar 

  • Izquierdo I, Caravaca F, Alguacil MM, et al. (2005) Use of microbiological indicators for evaluating success in soil restoration after revegetation of a mining area under subtropical conditions. Appl Soil Ecol 30:3–10

    Article  Google Scholar 

  • Karthikeyan A, Deeparaj B, Nepolean P (2009) Reforestation in bauxite mine spoils with Casuarina equisetifolia frost. and beneficial microbes. For Trees Livelihoods 19:153–165

    Article  Google Scholar 

  • Klucas RV, Hanus FJ, Russell SA, Evans HJ (1983) Nickel: a micronutrient element for hydrogen-dependent growth of Rhizobium japonicum and for expression of urease activity in soybean leaves. Proc Natl Acad Sci 80:2253–2257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krumholz GD, Chval MS, McBride MJ, Tisa LS (2003) Germination and physiological properties of Frankia spores. In: Frankia symbiosis. Springer, pp. 57–67

  • Lancelle SA, Torrey JG, Hepler PK, Callaham DA (1985) Ultrastructure of freeze-substituted Frankia strain HFPCcI 3, the actinomycete isolated from root nodules of Casuarina cunninghamiana. Protoplasma 127:64–72

    Article  Google Scholar 

  • Lechevalier MP (1994) Taxonomy of the genus Frankia (actinomycetales). Int J Syst Bacteriol 44:1–8

    Article  Google Scholar 

  • Lefrançois E, Quoreshi A, Khasa D, et al (2007) Alder-Frankia symbionts enhance the remediation and revegetation of oil sands tailings.

  • Lefrançois E, Quoreshi A, Khasa D, et al. (2010) Field performance of alder-Frankia symbionts for the reclamation of oil sands sites. Appl Soil Ecol 46:183–191

    Article  Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153

    Article  CAS  Google Scholar 

  • Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2001) Phytoremediation of heavy metal–contaminated soils. J Environ Qual 30:1919–1926

    Article  CAS  PubMed  Google Scholar 

  • Lumini E, Bosco M, Puppi G, et al. (1994) Field performance of Alnus cordata loisel (Italian alder) inoculated with Frankia and VA-mycorrhizal strains in mine-spoil afforestation plots. Soil Biol Biochem 26:659–661

    Article  Google Scholar 

  • Mallet PL, Roy S (2014) The Symbiosis between Frankia and Alder Shrubs Results in a tolerance of the environmental stress associated with tailings from the Canadian Oil Sands Industry. J Pet Env Biotechnol 5:2

    Google Scholar 

  • Mansour SR (2003) Survival of Frankia strains under different soil conditions. Online J Biol Sci 3:618–626

    Article  Google Scholar 

  • Mansour SR, Dewedar A, Torrey JG (1990) Isolation, culture, and behavior of Frankia strain HFPCgI4 from root nodules of Casuarina glauca. Bot Gaz:490–496

  • Markham JH (2005) The effect of Frankia and Paxillus involutus on the performance of Alnus incana subsp. rugosa in mine tailings. Botany 83:1384–1390

    Google Scholar 

  • Meesters TM, Van Genesen ST, Akkermans ADL (1985) Growth, acetylene reduction activity and localization of nitrogenase in relation to vesicle formation in Frankia strains Cc1. 17 and Cp1. 2. Arch Microbiol 143:137–142

    Article  CAS  Google Scholar 

  • Dijk C van, Merkus E (1976) A microscopical study of the development of a spore-like stage in the life cycle of the root-nodule endophyte of Alnus glutinosa (L.) gaertn. New Phytol 77:73–91.

  • Miettinen P (1993) The response of a free-living and an endophytic Frankia to extreme environmental conditions. Symbiosis 15:121–134

    Google Scholar 

  • Moffat AJ, others (2000) Effects of inoculation with Frankia on the growth and nutrition of alder species and interplanted Japanese larch on restored mineral workings. Forestry 73:215–223.

  • Moiroud A (1996) Diversité et écologie des plantes actinorhiziennes. Acta Bot Gallica 143:651–661

    Article  Google Scholar 

  • Monz CA, Schwintzer CR (1989) The physiology of spore-negative and spore-positive nodules of Myrica gale. Plant Soil 118:75–87

    Article  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Murry MA, Fontaine MS, Tjepkema JD (1984a) Oxygen protection of nitrogenase in Frankia sp. HFPArI3. Arch Microbiol 139:162–166

    Article  CAS  PubMed  Google Scholar 

  • Murry MA, Fontaine MS, Torrey JG (1984b) Growth kinetics and nitrogenase induction in Frankia sp. HFPArI 3 grown in batch culture. In: Frankia symbioses. Springer, pp. 61–78

  • Myers AK, Tisa LS (2004) Isolation of antibiotic-resistant and antimetabolite-resistant mutants of Frankia strains EuI1c and Cc1. 17. Can J Microbiol 50:261–267

    Article  CAS  PubMed  Google Scholar 

  • Newcomb W, Callaham D, JG T, RL P (1979) Morphogenesis and fine structure of the actinomycetous endophyte of nitrogen-fixing root nodules of Comptonia peregrina. Bot Gaz 140:S22–S34

    Article  Google Scholar 

  • Ng BH (1987) The effects of salinity on growth, nodulation and nitrogen fixation of Casuarina equisetifolia. Plant Soil 103:123–125

    Article  CAS  Google Scholar 

  • Normand P, Orso S, Cournoyer B, et al. (1996) Molecular phylogeny of the genus Frankia and related genera and emendation of the family frankiaceae. Int J Syst Bacteriol 46:1–9

    Article  CAS  PubMed  Google Scholar 

  • Oliveira RS, Castro PML, Dodd JC, Vosátka M (2005) Synergistic effect of Glomus intraradices and Frankia spp. on the growth and stress recovery of Alnus glutinosa in an alkaline anthropogenic sediment. Chemosphere 60:1462–1470

    Article  CAS  PubMed  Google Scholar 

  • Oshone R, Mansour SR, Tisa LS (2013) Effect of salt stress on the physiology of Frankia sp strain CcI6. J Biosci 38:699–702

    Article  CAS  PubMed  Google Scholar 

  • Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184:105–126

    Article  CAS  Google Scholar 

  • Parsons R, Silvester WB, Harris S, et al. (1987) Frankia vesicles provide inducible and absolute oxygen protection for nitrogenase. Plant Physiol 83:728–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawlowski K, Demchenko KN (2012) The diversity of actinorhizal symbiosis. Protoplasma 249:967–979

    Article  PubMed  Google Scholar 

  • Perradin Y, Mottet MJ, Lalonde M (1983) Influence of phenolics on in vitro growth of Frankia strains. Can J Bot 61:2807–2814

    Article  CAS  Google Scholar 

  • Perrine-Walker F, Gherbi H, Imanishi L, et al. (2011) Symbiotic signaling in actinorhizal symbioses. Curr Protein Pept Sci 12:156–164

    Article  CAS  PubMed  Google Scholar 

  • Popovici J, Comte G, Bagnarol É, et al. (2010) Differential effects of rare specific flavonoids on compatible and incompatible strains in the Myrica gale-Frankia actinorhizal symbiosis. Appl Environ Microbiol 76:2451–2460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prin Y, Maggia L, Picard B, et al. (1991) Electrophoretic comparison of enzymes from 22 single-spore cultures obtained from Frankia strain ORS 140102. FEMS Microbiol Lett 77:223–227

    Article  CAS  Google Scholar 

  • Reddell P, Bowen GD, Robson AD (1985) The effects of soil temperature on plant growth, nodulation and nitrogen fixation in Casuarina cunninghamiana miq. New Phytol 101:441–450

    Article  CAS  Google Scholar 

  • Reddell P, Foster RC, Bowen GD (1986) The effects of sodium chloride on growth and nitrogen fixation in Casuarina obesa miq. New Phytol 102:397–408

    Article  CAS  Google Scholar 

  • Rehan M, Furnholm T, Finethy RH, et al. (2014a) Copper tolerance in Frankia sp. strain EuI1c involves surface binding and copper transport. Appl Microbiol Biotechnol 98:8005–8015

    Article  CAS  PubMed  Google Scholar 

  • Rehan M, Kluge M, Franzle S, Kellner H, Ullrich R, Hofrichter M (2014b) Degradation of atrazine by Frankia alni ACN14a: gene regulation, dealky;ation, and dechlorination. Appl Microbiol Biotechnol 98:6125–6135

    Article  CAS  PubMed  Google Scholar 

  • Richards JW, Krumholz GD, Chval MS, Tisa LS (2002) Heavy metal resistance patterns of Frankia strains. Appl Environ Microbiol 68:923–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ringo E, Clausen E, Lovaas E, et al. (1995) Effects of extracts of Alnus glutinosa seeds on growth of Frankia strain ArI3 under static and fermentor culture conditions. Plant Soil 176:283–288

    Article  Google Scholar 

  • Roy S, Khasa DP, Greer CW (2007) Combining alders, frankiae, and mycorrhizae for the revegetation and remediation of contaminated ecosystems. Botany 85:237–251

    CAS  Google Scholar 

  • Sadio S (1991) Pédogenèse et potentialités forestières des sols sulfatés acides salés des tannes du sine saloum, Sénégal. Editions de l’ORSTOM. ISBN 2–7099-1039-X.

  • Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111:743–767. doi:10.1093/aob/mct048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savouré A, Lim G (1991) Characterization of an effective Frankia (ISU 0224887) isolated from nodules of Gymnostoma sumatranum. Plant Soil 131:21–27

    Article  Google Scholar 

  • Sayed WF (2011) Improving Casuarina growth and symbiosis with Frankia under different soil and environmental conditions—review. Folia Microbiol (Praha) 56:1–9

    Article  CAS  Google Scholar 

  • Sayed WF, Wheeler CT, Zahran HH, Shoreit AAM (1997) Effect of temperature and soil moisture on the survival and symbiotic effectiveness of Frankia spp. Biol Fertil Soils 25:349–353

    Article  Google Scholar 

  • Sayed WF, Mohaowad SM, El-Karim MA (2000) Effect of Al, Co, and Pb ions on growth of Frankia spp. in a mineral medium. Folia Microbiol (Praha) 45:153–156

    Article  CAS  Google Scholar 

  • Sayed WF, Wheeler CT, El-Sharouny HM, et al. (2002) Effects of storage time and temperature on the infectivity and effectiveness of Frankia entrapped in polyacrylamide gel. Folia Microbiol (Praha) 47:545–550

    Article  CAS  Google Scholar 

  • Schwencke J (1991) Rapid, exponential growth and increased biomass yield of some Frankia strains in buffered and stirred mineral medium (BAP) with phosphatidyl choline. Plant Soil 137:37–41

    Article  CAS  Google Scholar 

  • Schwintzer C (1990) Spore positive and spore negative nodules. In: The biology of Frankia and actinorhizal plants. pp 177–193

  • Sellstedt A, Smith GD (1990) Nickel is essential for active hydrogenase in free-living Frankia isolated from Casuarina. FEMS Microbiol Lett 70:137–140

    CAS  Google Scholar 

  • Shash SM (2009) Molecular analysis of phenotypic diversity among four Frankia isolated from Casuarina nodules in Egypt. 1: some clonal variation among four Frankia isolates. Aust J Basic Appl Sci 3:529–535

    CAS  Google Scholar 

  • Silvester WB, Silvester JK, Torrey JG (1988) Adaptation of nitrogenase to varying oxygen tension and the role of the vesicle in root nodules of Alnus incana ssp. rugosa. Can J Bot 66:1772–1779

    Google Scholar 

  • Simonet P, Normand P, Hirsch AM, Akkermans AD (1989) The genetics of Frankia-Actinorhizal symbiosis. In: Gresshof PM (ed) In Molecular biology of symbiotic nitrogen fixation, vol 1989. C.R.C. Press, Boca Raton, pp. 77–109

  • Simonet P, Bosco M, Chapelon C, et al. (1994) Molecular characterization of Frankia microsymbionts from spore-positive and spore-negative nodules in a natural alder stand. Appl Environ Microbiol 60:1335–1341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh SS, Singh A, Srivastava A, et al. (2010) Characterization of frankial strains isolated from Hippophae salicifolia D. Don, based on physiological, SDS–PAGE of whole cell proteins and RAPD PCR analyses. World J Microbiol Biotechnol 26:985–992

    Article  CAS  Google Scholar 

  • Smolander A, Sarsa M-L (1990) Frankia strains of soil under Betula pendula: behaviour in soil and in pure culture. Plant Soil 122:129–136

    Article  Google Scholar 

  • Smolander A, Van Dijk C, Sundman V (1988) Survival of Frankia strains introduced into soil. Plant Soil 106:65–72

    Article  Google Scholar 

  • Srivastava A, Singh SS, Mishra AK (2013) Sodium transport and mechanism (s) of sodium tolerance in Frankia strains. J Basic Microbiol 53:163–174

    Article  CAS  PubMed  Google Scholar 

  • Tani C, Sasakawa H (2000) Salt tolerance of Elaeagnus macrophylla and Frankia Ema1 strain isolated from the root nodules of E. macrophylla. Soil Sci Plant Nutr 46:927–937

    Article  Google Scholar 

  • Tani C, Sasakawa H (2003) Salt tolerance of Casuarina equisetifolia and Frankia Ceq1 strain isolated from the root nodules of C. equisetifolia. Soil Sci Plant Nutr 49:215–222

    Article  Google Scholar 

  • Tisa LS, Ensign JC (1987a) Comparative physiology of nitrogenase activity and vesicle development for Frankia strains CpI1, ACN1 AG, EAN1pec and EUN1f. Arch Microbiol 147:383–388

    Article  CAS  Google Scholar 

  • Tisa LS, Ensign JC (1987b) The calcium requirement for functional vesicle development and nitrogen fixation by Frankia strains EAN1pec and CpI1. Arch Microbiol 149:24–29

    Article  CAS  Google Scholar 

  • Tisa LS, McBride M, Ensign JC (1983) Studies of growth and morphology of Frankia strains EAN1pec, EuI1c, CpI1, and ACN1AG. Can J Bot 61:2768–2773

    Article  CAS  Google Scholar 

  • Tisa LS, Chval MS, Krumholz GD, Richards J (1999) Antibiotic resistance patterns of Frankia strains. Can J Bot 77:1257–1260

    CAS  Google Scholar 

  • Tjepkema JD, Murry MA (1989) Respiration and nitrogenase activity in nodules of Casuarina cunninghamiana and cultures of Frankia sp. HFP020203: effects of temperature and partial pressure of O2. Plant Soil 118:111–118

    Article  Google Scholar 

  • Tjepkema JD, Ormerod W, Torrey JG (1980) Vesicle formation and acetylene reduction activity in Frankia sp. CpI1 cultured in defined nutrient media.

  • Tjepkema JD, Ormerod W, Torrey JG (1981) Factors affecting vesicle formation and acetylene reduction (nitrogenase activity) in Frankia sp. CpI1. Can J Microbiol 27:815–823

    Article  CAS  PubMed  Google Scholar 

  • Tzean SS, Torrey JG (1989) Spore germination and the life cycle of Frankia in vitro. Can J Microbiol 35:801–806

    Article  Google Scholar 

  • Van der Moezel PG, Walton CS, Pearce-Pinto GVN, Bell DT (1989) Screening for salinity and waterlogging tolerance in five Casuarina species. Landsc Urban Plan 17:331–337

    Article  Google Scholar 

  • Vogel CS, Dawson JO (1986) In vitro growth of five Frankia isolates in the presence of four phenolic acids and juglone. Soil Biol Biochem 18:227–231

    Article  CAS  Google Scholar 

  • Vogel CS, Dawson JO (1991) Nitrate reductase activity, nitrogenase activity and photosynthesis of black alder exposed to chilling temperatures. Physiol Plant 82:551–558

    Article  CAS  Google Scholar 

  • Wall LG (2000) The actinorhizal symbiosis. J Plant Growth Regul 19:167–182

    CAS  PubMed  Google Scholar 

  • Wheeler CT, Hughes LT, Oldroyd J, Pulford ID (2001) Effects of nickel on Frankia and its symbiosis with Alnus glutinosa (L.) gaertn. Plant Soil 231:81–90

    Article  CAS  Google Scholar 

  • Winship LJ, Tjepkema JD (1985) Nitrogen fixation and respiration by root nodules of Alnus rubra Bong.: Effects of temperature and oxygen concentration*. In: Frankia and Actinorhizal Plants. Springer, pp 91–107

  • Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464

    Article  CAS  PubMed  Google Scholar 

  • Zimpfer JF, Igual JM, McCarty B, et al. (2004) Casuarina cunninghamiana Tissue extracts stimulate the growth of Frankia and differentially alter the growth of other soil microorganisms. J Chem Ecol 30:439–452

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Our work is supported in part by the IRD (Institut de Recherche pour le Développement), the AUF (Agence Universitaire de la Francophonie) through the inter-regional doctoral college in food and plant biotechnology (CD-BIOVEGAGRO), a JGI Community Sequencing Programme (CSP 580) and the USDA National Institute of Food and Agriculture Hatch 022821.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antony Champion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngom, M., Oshone, R., Diagne, N. et al. Tolerance to environmental stress by the nitrogen-fixing actinobacterium Frankia and its role in actinorhizal plants adaptation. Symbiosis 70, 17–29 (2016). https://doi.org/10.1007/s13199-016-0396-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-016-0396-9

Keywords

Navigation