Skip to main content
Log in

Mycophagous mites and their internal associated bacteria cooperate to digest chitin in soil

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

The greater bulk of soil nitrogen is immobilized in chitinous cell walls of fungi. Mycophagous soil mites participate in chitin decomposition and, hence, in the subsequent mobilization of nitrogen. The source of the chitinolytic enzymes was searched in this study. A multimethodical approach was designed for these studies. Histology, plating and identification of bacteria from mite homogenate and, finally, homogenate and bacterial treatment of the soil fungi were applied. Here the presence and activity of chitinolytic bacteria inside mycophagous mites are reported. These bacteria form an extraintestinal group within the mite’s body and pass their enzymes into the mite’s gut. Our results demonstrate that true mycophagous mites, defined by their ability to digest chitin (i.e. the fungal cell wall), achieve this through internal “cooperation” with chitinolytic bacteria that provide the necessary chitinolytic enzymes. The nitrogen from chitin is thus made available to other soil organisms and plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figs. 1–4
Figs. 5–8
Figs. 9–12

Similar content being viewed by others

References

  • Aktuganov GE, Melent'ev AI, Kuz'mina LJu, Galimzyanova NF, Shirokov AV (2004) The Chitinolytic Activity of Bacillus Cohn Bacteria Antagonistic to Phytopathogenic Fungi. Microbiology 72:313–317

    Article  Google Scholar 

  • Citterio B, Malatesta M, Battistelli S, Marcheggiani F, Baffone W, Saltarelli R, Stocchi V, Gazzanelli G (2001) Possible involvement of Pseudomonas fluorescens and Bacillaceae in structural modifications of Tuber borchii fruit bodies. Can J Microbiol 47:264–268

    Article  CAS  PubMed  Google Scholar 

  • Coleman D, McGinnis JT (1970) Quantification of fungus—small arthropod food chains in the soil. Oikos 21:134–137

    Article  Google Scholar 

  • Czajkowska B (1970) Rozwój rozkruszków na niektórych gatunkach grzybów. Zesz Problemowe Postepów Nauk Rolniczych 109:219–227

    Google Scholar 

  • Dinsdale D (1974) The digestive activity of a phthiracarid mite mesenteron. J Zool Soc Lond 174:15–21

    Article  Google Scholar 

  • Hudson HJ (1986) Fungal biology. Edward Arnold, London, 298 pp

    Google Scholar 

  • Jaspers E, Overmann J (2004) Ecological significance of microdiversity:identical 16 S rRNA gene sequence can be found in bacteria with highly divergent genomes and ecophysiologies. Appl Environ Microbiol 70:4831–4839

    Article  CAS  PubMed  Google Scholar 

  • Kjøller A, Struwe S (1982) Microfungi in ecosystems: fungal occurrence and activity in litter and soil. In: A comparative analysis of soil fauna populations and their role in decomposition processes. Petersen, H. and Luxton, M., eds. Oikos 39 (Suppl.) pp 391–422

  • Kishore GK, Pande S, Podile AR (2005) Chitin-supplemented Foliar Application of Serratia marcescens GPS 5 Improves Control of Late Leaf Spot Disease of Groundnut by Activating Defence-related Enzymes. J Phytopathol 153:169–173

    Article  CAS  Google Scholar 

  • Kobayashi DY, Reedy RM, Bick JA, Oudemans PV (2002) Characterization of chitinase gene from Stenotrophomonas maltophilia Strain 34 S1 and its involvement in biological control. Appl Environ Microbiol 68:1047–1054

    Article  CAS  PubMed  Google Scholar 

  • Lim HS, Kim YS, Kim SD (1991) YPL-1 Genetic Transformation and Antifungal Mechanism against Fusarium solani, an Agent of Plant Root Rot. Appl Environ Microbiol 57:510–516

    CAS  PubMed  Google Scholar 

  • Luxton M (1972) Studies on the oribatid mites of a Danish beech wood soil. I. Nutritional biology. Pedobiologia 2:434–463

    Google Scholar 

  • Mitchell MJ, Parkinson D (1976) Fugal feeding of oribatid mites (Acari: Cryptostigmata) in an aspen woodland soil. Ecology 57:302–312

    Article  Google Scholar 

  • Molloy C, Burke B (1997) Expression and secretion of Janthinobacterium lividum chitinase in Saccharomyces cerevisiae. Biotechnol Lett 19:1161–1164

    Article  CAS  Google Scholar 

  • O'Neil SE, Heinrich TK, Hales BJ, Hazell LA, Holt DC, Fischer K, Thomas WR (2006) The chitinase allergens Der p15 and Der p18 from Dermatophagoides pteronyssinus. Clin Exp Allergy 36:831–839

    Article  PubMed  Google Scholar 

  • Overgaard Nielsen C (1962) Carbohydrates in soil and litter invertebrates. Oikos 13:200–215

    Article  Google Scholar 

  • Pande YD, Berthet P (1973) Studies on the food and feeding habits of soil Oribatei in a black pine plantation. Oecologia Berl 12:413–426

    Article  Google Scholar 

  • Pauly F (1956) Zur Biologie einiger Belbiden (Oribatei, Moosmilben) und zur Funktion ihrer pseudostigmatischen Organe. Zoologische Jahrbücher Systematik 84:275–328

    Google Scholar 

  • Schneider K, Migge S, Norton RA, Scheu S, Langel R, Reineking A, Maraun M (2004) Trophic niche differentiation in soil microarthropods (Oribatida, Acari: evidence from stable isotope ratios (15 N/14 N). Soil Biol Biochem 36:1769–1774

    Article  CAS  Google Scholar 

  • Seniczak S, Stefaniak O (1978) The microflora of the alimentary canal of Oppia nitens (Acarina, Oribatei). Pedobiologia 18:110–119

    Google Scholar 

  • Siepel H, de Ruiter-Dijkman EM (1993) Feeding guilds of oribatid mites based on their carbohydrase activities. Soil Biol Biochem 25:1491–1497

    Article  Google Scholar 

  • Shimano S, Matsuo T (2002) Morphological studies on the digestive tract of Scheloribates azumaensis (Acari: Oribatida). J Acarological Soc Jpn 11:37–40

    Article  Google Scholar 

  • Smrž J (1989) Internal anatomy of Hypochthonius rufulus (Acari, Oribatida). J Morphol 200:215–230

    Article  Google Scholar 

  • Smrž J (1992) Some adaptive features in the microanatomy of moss-dwelling oribatid mites (Acari: Oribatida) with respect to their ontogenical development. Pedobiologia 36:306–320

    Google Scholar 

  • Smrž J (1996) Some aspects of the life strategy of oribatid mites. In Acarology IX., Mitchell, Horn, R. D. J., Needham, G. R. and Welbourn, W. C., eds. Ohio Biol. Survey, Columbus, Ohio, USA. pp 553–555

  • Smrž J (2000) A modified test for chitinase and cellulase activity in soil mites. Pedobiologia 44:186–189

    Article  Google Scholar 

  • Smrž J (2002a) Nutritional biology: the basic step in the autecological studies (multi-methodical approach). Eur J Soil Biol 38:35–38

    Article  Google Scholar 

  • Smrž J (2002b) The excrement analysis—the useful tool for the biological and autecological studies in soil zoology. In: Studies on Soil Fauna in Central Europe. Tajovský, K., Balík, V. and Pižl, V. eds. Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice. pp.185–189

  • Smrž J (2003) Microanatomical and biological aspects of bacterial associations in Tyrophagus putrescentiae (Acari: Acaridida). Exp Appl Acarol 31:105–113

    Article  PubMed  Google Scholar 

  • Smrž J (2006) Microhabitat selection in the simple oribatid community dwelling in epilithic moss cover (Acari: Oribatida). Naturwisseschaften 93:570–576

    Article  Google Scholar 

  • Smrž J (2007) Nutritional biology in the oribatid mites (Acari: Oribatida) communities in the different, closely neighbouring microhabitats in the steppe biotope—preliminary report. In: Tajovský K, Schlaghamerský J, Pižl V (eds) Contributions to Soil Zoology in Central Europe II. Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, pp 153–160

    Google Scholar 

  • Smrž J, Čatská V (1987) Food selection of the field population of Tyrophagus putrescentiae (Schrank) (Acari, Acaridida). Z Angewadte Entomologie 104:329–335

    Google Scholar 

  • Smrž J, Čatská V (1989) The effect of the consumption of some soil fungi on the internal microanatomy of the mite Tyrophagus putrescentiae (Schrank)(Acari, Acaridida). Acta Univ Carol Biol 33:81–93

    Google Scholar 

  • Smrž J, Jungová E (1989) The ecology of a field population of Tyrophagus putrescentiae (Acari, Acaridida). Pedobiologia 33:183–192

    Google Scholar 

  • Smrž J, Norton RA (2004) Food selection and internal processing in Archegozetes longisetosus (Acari: Oribatida). Pedobiologia 48:111–120

    Article  Google Scholar 

  • Smrž J, Trelová M (1995) The associations of bacteria and some soil mites (Acari: Oribatida and Acaridida). Acta Zool Fennica 196:120–123

    Google Scholar 

  • Smrž J, Soukalová H (2008) Mycophagous mites (Acari: Oribatida and Acaridida) and their cooperation with chitinolytic bacteria. In: Bertrand M. Kreiter, S. McCoy, K.D. Migeon A.,Navajas M., Tixier M.-S. Vial L. eds.: Integrative acarology. EURAAC. pp 359–362

  • Smrž J, Svobodová J, Čatská V (1991) Synergetic participation of Tyrophagus putrescentiae (Schrank) (Acari, Acaridida) and its associated bacteria on the destruction of some soil micromycetes. J Appl Entomol 111:206–210

    Article  Google Scholar 

  • Stefaniak O, Seniczak S (1976) The microflora of the alimentary canal of Achipteria coleoptrata (Acarina, Oribatei). Pedobiologia 16:185–194

    Google Scholar 

  • Stefaniak O, Seniczak S (1981) The effect of fungal diet on the development of Oppia nitens (Acari, Oribatei) and on the miocroflora of its alimentary tract. Pedobiologia 21:202–210

    Google Scholar 

  • Wallwork JA (1976) The distribution and diversity of soil fauna. Academic, London, 353 pp

    Google Scholar 

  • Wang SL, Chiou SH, Chang WT (1997) Production of chitinase from shellfish waste by Pseudomonas aeruginosa K-187. Proc Natl Sci Counc Repub China 21:71–78

    CAS  Google Scholar 

  • Watanabe T, Oyanagi W, Suzuki K, Tanaka H (1990) Chitinase system of Bacillus circulans WL-12 and importance of chitinase A1 in chitin degradation. J Bacteriol 172:4017–4022

    CAS  PubMed  Google Scholar 

  • Wigglesworth VB (1974) The Principles of Insect Physiology, 7th edn. Chapman and Hall, London, 827 pp

    Google Scholar 

  • Wolf MM, Rockett CL (1984) Habitat changes affecting bacterial composition in the alimentary canal of oribatid mites (Acari: Oribatida). Int J Acarol 10:209–215

    Article  Google Scholar 

  • Zhang Z, Yuen GY, Sarath G, Penheiter AR (2001) Chitinases from the plant disease biocontrol agent, Stenotrophomonas maltophilia C3. Phytopathology 91:204–211

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The fieldwork and histological work for this study were supported by Grant No. 526/07/0393 from the Grant Agency of the Czech Republic. The other laboratory work was supported by grant MSM 0021620828 from the Ministry of Education of the Czech Republic. We wish to thank ing.M.Doubek, State Health Institute, Prague, for his very kind help with the TEM observations, prof.dr.J.Vávra, Department of Parasitology, Charles University, Prague, who rendered possible to make the ultramicrotome sections and mgr.T.Erban for his information about Dermatophagoides chitinases. We wish to thank also Mrs. Milada Řeháková for her technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Smrž.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smrž, J., Čatská, V. Mycophagous mites and their internal associated bacteria cooperate to digest chitin in soil. Symbiosis 52, 33–40 (2010). https://doi.org/10.1007/s13199-010-0099-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-010-0099-6

Keywords

Navigation