Skip to main content
Log in

Symbiotic performance of common bean and soybean co-inoculated with rhizobia and Chryseobacterium balustinum Aur9 under moderate saline conditions

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

The effect of co-inoculating beans and soybeans with rhizobia and Chryseobacterium, a plant growth promoting bacteria (PGPR), was studied under conditions of mild saline stress. Chryseobacterium balustinum Aur9 was used with Rhizobium tropici CIAT899 or R. etli ISP42 to inoculate common bean (Phaseolus vulgaris L.), or jointly with Ensifer (Sinorhizobium) fredii SMH12 and HH103 to inoculate soybean (Glycine max (L.) Merrill). The effect of co-inoculation was studied by following nodule primordia initiation, nodulation kinetics and symbiotic performance in plants grown under moderate saline conditions (25 mM NaCl). In common bean, co-inoculation improved nodule primordia formation when compared with single inoculation (R. tropici CIAT899). However, co-inoculation did not provide benefits in the development of nodule primordia in soybean with E. fredii SMH12. The kinetic of nodulation in bean was also favored by double inocula resulting in a higher number of nodules. Long-term effects of co-inoculation on beans and soybeans depended on the rhizobial species used. In both, control and saline conditions, co-inoculation of R. tropici CIAT899 and C. balustinum Aur9 improved bean growth when compared with the single inoculation (CIAT899). However, the positive effect of double inocula on plant growth did not occur when using R. etli ISP42. Soybean plants receiving double inoculation (E. fredii SMH12 and C. balustinum Aur9) showed better symbiotic performance, mostly under saline stress, than with a single inoculation. The results indicate that co-inoculation with C. balustinum and rhizobia under mild saline conditions partially relieves the salt-stress effects, although do not always result advantageous for symbiotic N2 fixation in legume plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad F, Ahmad I, Khan MS (2005) Indole acetic acid production by the indigenous isolates of Azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turkish Journal of Biology 29:29–34.

    CAS  Google Scholar 

  • Albareda M, Dardanelli MS, Sousa C, Megías M, Temprano F, Rodríguez-Navarro DN (2006) Factors affecting the attachment of rhizospheric bacteria to bean and soybean roots. FEMS Microbiology Letters 259:67–73.

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Hasnain S, Berge O, Mahmood T (2004) Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biology and Fertility of Soils 40:157–162.

    CAS  Google Scholar 

  • Bai Y, Zhou X, Smith DL (2003) Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum. Crop Science 43:1774–1781.

    Google Scholar 

  • Barassi CA, Ayrault G, Creus CM, Sueldo RJ, Sobrero MT (2006) Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Scientia Horticulturae 109:8–14.

    Article  CAS  Google Scholar 

  • Bellogín, R.A., Cubo, T., Hidalgo, A., López F.J., Megías, M., Ollero, F.J., Ruiz-Sainz, J.E., and Espuny, M.R. 2006. El sistema de doble raíz aplicado al estudio de la influencia de estirpes PGPRs sobre la nodulación de la soja por S. fredii HH103. Abstracts XI Reunión Nacional SEFIN, Madrid, Spain, 60 pp.

  • Berggren I, Alström S, van Vuurde JWL, Mårtensson AM (2005) Rhizoplane colonisation of peas by Rhizobium leguminosarum bv. viceae and a deleterious Pseudomonas putida. FEMS Microbiology Ecology 52:71–78.

    Article  CAS  PubMed  Google Scholar 

  • Beringer JE (1974) R factor transfer in Rhizobium leguminosarum and Rhizobium phaseoli. Journal of General Microbiology 84:188–198.

    CAS  PubMed  Google Scholar 

  • Bordeleau LM, Prévost D (1994) Nodulation and nitrogen fixation in extreme environments. Plant and Soil 161:115–125.

    Article  CAS  Google Scholar 

  • Camacho M, Santamaría C, Temprano F, Rodríguez-Navarro DN, Daza A (2001) Co-inoculation with Bacillus sp. CECT 450 improves nodulation in Phaseolus vulgaris L. Canadian Journal of Microbiology 47:1058–1062.

    Article  CAS  PubMed  Google Scholar 

  • Catroux G, Hartmann A, Revellin C (2001) Trends in rhizobial inoculant production and use. Plant and Soil 230:21–30.

    Article  CAS  Google Scholar 

  • Cleyet-Marel JC (1987) Dynamique des populations de Rhizobium et de Bradyrhizobium dans le sol et la rhizosphere. These d’Etat. University Claude Bernard, Lyon, France.

    Google Scholar 

  • Dardanelli MS, Fernández de Córdoba FJ, Espuny MR, Rodríguez Carvajal MA, Soria Díaz ME, Gil-Serrano AM, Okon Y, Megías M (2008) Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biology and Biochemistry 40:2713–2721.

    Article  CAS  Google Scholar 

  • Dashti N, Zhang F, Hynes RK, Smith DL (1998) Plant growth promoting rhizobacteria accelerate nodulation and increase fixation activity by field grown soybean [Glycine max (L.) Merr.] under short season conditions. Plant and Soil 200:205–213.

    Article  CAS  Google Scholar 

  • Dashti N, Prithiviraj B, Hynes RK, Smith DL (2000) Root and rhizosphere colonization of soybean [Glycine max (L.) Merr.] by plant-growth-promoting rhizobacteria at low root zone temperatures and under short-season conditions. Journal of Agronomy and Crop Science 185:15–22

    Article  Google Scholar 

  • Dowdle SF, Bohlool BB (1985) Predominance of fast-growing Rhizobium japonicum in a soybean field in the People’s Republic of China. Applied and Environmental Microbiology 50:1171–1176.

    PubMed  CAS  Google Scholar 

  • Elsheikh EAE, Wood D (1990) Effect of salinity on growth, nodulation and nitrogen yield of chickpea (Cicer arietinum L.). Journal of Experimental Botany 41:1263–1269.

    Article  CAS  Google Scholar 

  • Estévez, J. 2007. Implicaciones básicas y aplicadas de la interacción triple rizobio-PGPR-leguminosa. PhD Thesis, University of Seville, Spain.

  • Fåhraeus G (1957) The infection of white clover root hairs by nodule bacteria studied by a simple slide technique. Journal of General Microbiology 16:374–381.

    PubMed  Google Scholar 

  • Gentili F, Jumpponen A (2006) Potential and possible uses of bacterial and fungal biofertilizers. In: Rai MK (ed) Handbook of Microbial Biofertilizers. The Haworth Press, Inc., New York, pp 1–28

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology 41:109–117.

    Article  CAS  Google Scholar 

  • Gutiérrez Mañero FJ, Probanza A, Ramos B, Colón Flores JJ, Lucas García JA (2003) Effects of culture filtrates of rhizobacteria isolated from wild lupine on germination, growth, and biological nitrogen fixation of lupine seedlings. Journal of Plant Nutrition 26:1101–1115.

    Article  CAS  Google Scholar 

  • Hamaoui B, Abbadi JM, Burdam S, Rashid A, Sarig A, Okon Y (2001) Effects of inoculation with Azospirillum brasilense on chickpeas (Cicer arietinum) and faba beans (Vicia faba) under different growth conditions. Agronomie 21:553–560.

    Article  Google Scholar 

  • Hartwig UA, Heim I, Lüscher A, Nösberger J (1994) The nitrogen-sink is involved in the regulation of nitrogenase activity in white clover after defoliation. Physiologia Plantarum 92:375–382.

    Article  CAS  Google Scholar 

  • Jebara M, Drevon J-J, Aouani ME (2001) Effects of hydroponic culture system and NaCl on interactions between common bean lines and native rhizobia from Tunisian soils. Agronomie 21:601–605.

    Article  Google Scholar 

  • Khadri M, Tejera NA, Lluch C (2006) Alleviation of salt stress in common bean (Phaseolus vulgaris) by exogenous abcisic acid supply. Journal of Plant Growth Regulation 25:110–119.

    Article  CAS  Google Scholar 

  • Kuklinsky-Sobral J, Luiz Araújo W, Mendes R, Geraldi LO, Pizzirani-Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant for plant growth promotion. Environmental Microbiology 6:1244–1251.

    Article  CAS  PubMed  Google Scholar 

  • López-Lara IM, van Der Drift KMGM, van Brussel AAN, Haverkamp J, Lugtenberg BJJ, Thomas-Oates J, Spaink H (1995) Induction of nodule primordia on Phaseolus and Acacia by lipo-chitin oligosaccharide nodulation signals from broad-host-range Rhizobium strain GRH2. Plant Molecular Biology 29:465–477.

    Article  PubMed  Google Scholar 

  • Lucas García JA, Probanza A, Ramos B, Gutiérrez Mañero FJ (2003) Effects of three plant growth-promoting rhizobacteria on the growth of seedlings of tomato and pepper in two different sterilized and non sterilized peats. Archives of Agronomy and Soil Science 49:117–119.

    Google Scholar 

  • Lucas García JA, Probanza A, Ramos B, Barriuso J, Gutiérrez Mañero FJ (2004a) Effects of inoculation with plant growth promoting rhizobacteria (PGPRs) and Sinorhizobium fredii on biological nitrogen fixation, nodulation and growth of Glycine max cv. Osumi. Plant and Soil 267:143–153.

    Article  Google Scholar 

  • Lucas García JA, Probanza A, Ramos B, Colón Flores JJ, Gutiérrez Mañero FJ (2004b) Effects of plant growth promoting rhizobacteria (PGPRs) on the biological nitrogen fixation, Nodulation, and growth of Lupinus albus L. cv. Multolupa. Engineering in Life Sciences 4:71–77.

    Article  CAS  Google Scholar 

  • Lucas García JA, Doménech J, Santamaría C, Camacho M, Daza A, Gutierrez Mañero FJ (2004c) Growth of forest plants (pine and holm-oak) inoculated with rhizobacteria: relationship with microbial community structure and biological activity of its rhizosphere. Environmental and Experimental Botany 52:239–251.

    Article  Google Scholar 

  • Maas EV (1986) Salt tolerance of plants. Applied Agricultural Research 1:12–26

    Google Scholar 

  • Martínez-Romero E, Segovia L, Mercante FM, Franco AA, Graham P, Pardo MA (1991) Rhizobium tropici a novel species nodulating Phaseolus vulgaris L. beans and Leucaena spp. trees. Journal of Systematic Bacteriology 41:417–426.

    Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004a) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Science 166:525–572.

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004b) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiology and Biochemistry 42:565–572.

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell and Environment 25:239–250.

    Article  CAS  Google Scholar 

  • O´Hara, G., Yates, R., and Howieson, J. 2002. Selection strains of root nodule bacteria to improve inoculant performance and increase legume productivity in stressful environments. In: Inoculants and Nitrogen Fixation of Legumes in Vietnam. Herridge, D., ed. Australian Centre for International Agriculture Research No. 109e. pp. 75–80.

  • Phillips DA (1980) Efficiency of symbiotic nitrogen fixation in legumes. Annual Review of Plant Physiology 31:29–49.

    Article  CAS  Google Scholar 

  • Polonenko DR, Mayfield CI, Dumbroff EB (1986) Microbial responses to salt-induced osmotic stress. Plant and Soil 92:417–425.

    Article  CAS  Google Scholar 

  • Remans R, Beebe S, Blair M, Manrique G, Tovar E, Rao I, Croonenborghs A, Torres-Gutiérrez R, El-Howeity M, Michiels J, Vanderleyden J (2008) Physiological and genetic analysis of root responsiveness to auxin-producing plant growth-promoting bacteria in common bean (Phaseolus vulgaris L.). Plant and Soil 302:149–161.

    Article  CAS  Google Scholar 

  • Rigaud J, Puppo A (1975) Indole-3-acetic acid catabolism by soybean bacteroids. Journal of General Microbiology 88:223–228.

    Google Scholar 

  • Rodríguez-Navarro DN, Buendía AM, Camacho M, Lucas MM, Santamaría C (2000) Characterization of Rhizobium spp. bean isolates from South-West Spain. Soil Biology and Biochemistry 32:1601–1613.

    Article  Google Scholar 

  • Rodríguez-Navarro DN, Bellogín R, Camacho M, Daza A, Medina C, Ollero FJ, Santamaria C, Ruiz-Sainz JE, Vinardell JM, Temprano FJ (2003) Field assessment and genetic stability of Sinorhizobium fredii strain SMH12 for commercial soybean inoculants. European Journal of Agronomy 19:299–309.

    Article  Google Scholar 

  • Rudresha DL, Shivaprakasha MK, Prasad RD (2005) Effect of combined application of Rhizobium, phosphate solubilizing bacterium and Trichoderma spp. on growth, nutrient uptake and yield of chickpea (Cicer aritenium L.). Applied Soil Ecology 28:139–146.

    Article  Google Scholar 

  • Sardinha M, Müller T, Schmeisky H, Joergensen RG (2003) Microbial performance in soils along a salinity gradient under acidic conditions. Applied Soil Ecology 23:237–244.

    Article  Google Scholar 

  • Soussi M, Ocaña A, Lluch C (1998) Effects of salt stress on growth, photosynthesis and nitrogen fixation in chick-pea (Cicer arietinum L.). Journal of Experimental Botany 49:1329–1337.

    Article  CAS  Google Scholar 

  • Singleton PW (1983) A split-root growth system for evaluating the effect of salinity on components of the soybean-Rhizobium japonicum symbiosis. Crop Science 23:259–262.

    CAS  Google Scholar 

  • Singleton PW, Bohlool BB (1984) Effect of salinity on nodule formation by soybean. Plant Physiology 74:72–76.

    Article  CAS  PubMed  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant. FEMS Microbiology Review 31:425–448.

    Article  CAS  Google Scholar 

  • Tejera NA, Campos R, Sanjuan J, Lluch C (2005) Effect of sodium chloride on growth, nutrient accumulation, and nitrogen fixation of common bean plants in symbiosis with isogenic strains. Journal of Plant Nutrition 28:1907–1921.

    Article  CAS  Google Scholar 

  • Tilak KVBR, Ranganayaki N, Manoharachari C (2006) Synergistic effects of plant-growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeonpea (Cajanus cajan). European Journal of Soil Science 57:67–71.

    Article  CAS  Google Scholar 

  • Truchet G, Camut S, de Billy F, Odorico R, Vasse J (1989) The Rhizobium-legume symbiosis. Two methods to discriminate between nodules and other root derived structures. Protoplasma 149:82–89.

    Google Scholar 

  • Tu JC (1981) Effect of salinity on Rhizobium root hairs interaction, nodulation and growth of soybean. Canadian Journal of Plant Science 61:231–239.

    Article  Google Scholar 

  • van Brussel AAN, Planqué K, Quispel A (1977) The wall of Rhizobium leguminosarum in bacteroid and free-living forms. Journal of General Microbiology 101:51–56.

    Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil 255:571–586.

    Article  CAS  Google Scholar 

  • Vincent JM (1970) A Manual for the Practical Study of Root-Nodule Bacteria. Blackwell, Oxford

    Google Scholar 

  • Welbaum G, Sturz AV, Dong Z, Nowak J (2004) Managing soil microorganisms to improve productivity of agro-ecosystems. Critical Reviews in Plant Sciences 23:175–193.

    Article  CAS  Google Scholar 

  • Yuan BC, Li ZZ, Liu H, Gao M, Zhang YY (2007) Microbial biomass and activity in salt affected soils under arid conditions. Applied Soil Ecology 35:319–328.

    Article  Google Scholar 

  • Yue H, Mo W, Li Ch, Zheng Y, Li H (2007) The salt stress relief and growth promotion effect of Rs-5 on cotton. Plant and Soil 297:139–145.

    Article  CAS  Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiology and Molecular Biology Reviews 63:968–989.

    CAS  PubMed  Google Scholar 

  • Zaidi A, Khan Md S, Amil Md (2003) Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of chickpea (Cicer arietinum L.). European Journal of Agronomy 19:15–21.

    Article  Google Scholar 

  • Zhou M, Tucker TC, Pessarakli M, Cepeda JA (1992) Nitrogen fixation by alfalfa with two substrate nitrogen levels under sodium chloride stress. Soil Science Society of America Journal 56:1500–1504.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Rodríguez-Navarro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Estévez, J., Dardanelli, M.S., Megías, M. et al. Symbiotic performance of common bean and soybean co-inoculated with rhizobia and Chryseobacterium balustinum Aur9 under moderate saline conditions. Symbiosis 49, 29–36 (2009). https://doi.org/10.1007/s13199-009-0008-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-009-0008-z

Keywords

Navigation