Skip to main content

Advertisement

Log in

Carbon Storage and Fluxes within Freshwater Wetlands: a Critical Review

  • Original Paper
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

We critically review recent literature on carbon storage and fluxes within natural and constructed freshwater wetlands, and specifically address concerns of readers working in applied science and engineering. Our purpose is to review and assess the distribution and conversion of carbon in the water environment, particularly within wetland systems. A key aim is to assess if wetlands are carbon sinks or sources. Carbon sequestration and fluxes in natural and constructed wetlands located around the world has been assessed. All facets of carbon (solid and gaseous forms) have been covered. We draw conclusions based on these studies. Findings indicate that wetlands can be both sources and sinks of carbon, depending on their age, operation, and the environmental boundary conditions such as location and climate. Suggestions for further research needs in the area of carbon storage in wetland sediments are outlined to facilitate the understanding of the processes of carbon storage and removal and also the factors that influence them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Alford DP, Delaune RD, Lindau CW (1997) Methane flux from Mississippi River deltaic plain wetlands. Biogeochemistry 37:227–236

    Article  CAS  Google Scholar 

  • Alongi DM, Trott LA, Pfitzner J (2007) Deposition, mineralization, and storage of carbon and nitrogen in sediments of the far northern and northern Great Barrier Reef shelf. Continental Shelf Research 27:2595–2622

    Article  Google Scholar 

  • Altor AE, Mitsch WJ (2006) Methane flux from created riparian marshes: relationship to intermittent versus continuous inundation and emergent macrophytes. Ecological Engineering 28:224–234

    Article  Google Scholar 

  • Amthor JS, Dale VH, Edwards NT, Garten CT, Gunderson CA, Hanson PJ, Huston MA, King AW, Luxmoore RJ, McLaughlin SB, Marland G, Mulholland PJ, Norby RJ, O’Neill EG, O’Neill RV, Post WM, Shriner DS, Todd DE, Tschaplinski TJ, Turner RS, Tuskan GA, Wullschleger SD (1998) Terrestrial ecosystem responses to global change: a research strategy. ORNL Technical Memorandum 1998/27. Oak Ridge National Laboratory, Oak Ridge

    Google Scholar 

  • Anderson CJ, Mitsch WJ (2006) Sediment, carbon, and nutrient accumulation at two 10-year-old created riverine marshes. Wetlands 26:779–792

    Article  Google Scholar 

  • Armentano TB, Menges ES (1986) Patterns of change in the carbon balance of organic soil-wetlands of the temperate zone. Journal of Ecology 74:755–774

    Article  CAS  Google Scholar 

  • Augustin J, Merbach W, Rogasik J (1998) Factors influencing nitrous oxide and methane emissions from minerotrophic fens in Northeast Germany. Biology and Fertility of Soils 28:1–4

    Article  CAS  Google Scholar 

  • Bano N, Moran MA, Hodson RE (1997) Bacterial utilization of dissolved humic substances from a freshwater swamp. Aquatic Microbial Ecology 12:233–238

    Article  Google Scholar 

  • Barber LB, Leenheer JA, Noyes TI, Stiles EA (2001) Nature and transformation of dissolved organic matter in treatment wetlands. Environmental Science and Technology 35:4805–4816

    Article  PubMed  CAS  Google Scholar 

  • Bartlett KB, Harris RC (1993) Review and assessment of methane emissions from wetlands. Chemosphere 26:261–320

    Article  CAS  Google Scholar 

  • Bartlett KB, Crill PM, Sebacher DI, Harris RC, Wilson JO, Melack JM (1988) Methane flux from the central Amazonian floodplain. Journal of Geophysical Research 93:1571–1582

    Article  CAS  Google Scholar 

  • Bartlett KB, Crill PM, Sass RL, Harris RC, Dise NB (1992) Methane emissions from tundra environments in the Yukon-Kuskokwin Delta, Alaska. Journal of Geophysical Research 97:16645–16660

    CAS  Google Scholar 

  • Bedard-Haughn A, Jongbloed F, Akkerman J, Uijl A, Jong E, Yates T, Pennock D (2006) The effects of erosional and management history on soil organic carbon stores in ephemeral wetlands of hummocky agricultural landscapes. Geoderma 135:296–306

    Article  CAS  Google Scholar 

  • Bellisario LM, Bubier JL, Moore TR, Hanton JP (1999) Controls on CH4 emissions from a northern peatland. Global Biogeochemical Cycles 13:81–91

    Article  CAS  Google Scholar 

  • Boon PI, Lee K (1997) Methane oxidation in sediments of a floodplain wetland in south-eastern Australia. Letters in Applied Microbiology 25:138–142

    Article  CAS  Google Scholar 

  • Bormann BT, Spaltenstein H, McClellan MH, Ugolini FC, Cromackjr K, Nay SM (1995) Rapid soil development after windthrow disturbance in pristine forests. Journal of Ecology 83:747–757

    Article  Google Scholar 

  • Brevik EC, Homburg JAA (2004) 5000 year record of carbon sequestration from a coastal lagoon and wetland complex, Southern California, USA. Catena 57:221–232

    Article  CAS  Google Scholar 

  • Bridgham SD, Richardson CJ (1992) Mechanisms controlling soil respiration (CO2 and CH4) in southern peatlands. Soil Biology and Biochemistry 24:1089–1099

    Article  CAS  Google Scholar 

  • Bridgham SD, Megonial JP, Keller JK, Bliss NB, Trettin C (2006) The carbon balance of North American wetlands. Wetlands 26:889–916

    Article  Google Scholar 

  • Brix H, Sorrell BK, Lorenzen B (2001) Are Phragmites-dominated wetlands a net source or net sink of greenhouse gases. Aquatic Botany 69:313–324

    Article  CAS  Google Scholar 

  • Bubier JL, Moore TR, Roulet NT (1993) Methane emissions from wetlands in the midboreal region of Northern Ontario, Canada. Ecology 74:2240–2254

    Article  Google Scholar 

  • Buesing N, Gessner MO (2006) Benthic bacterial and fungal productivity and carbon turnover in a freshwater marsh. Applied and Environmental Microbiology 72:596–605

    Article  PubMed  CAS  Google Scholar 

  • Burgoon PS, Reddy KR, DeBusk TA (1995) Performance of subsurface flow wetlands with batchload and continuous-flow conditions. Water and Environment Research 67:855–862

    Article  CAS  Google Scholar 

  • Cao M, Gregson K, Marshall S (1998) Global methane emission from wetlands and its sensitivity to climate change. Atmospheric Environment 32:3293–3299

    Article  CAS  Google Scholar 

  • Carroll P, Crill PM (1997) Carbon balance of a temperate poor fen. Global Biogeochemical Cycles 11:349–356

    Article  CAS  Google Scholar 

  • Carty A, Scholz M, Heal K, Gouriveau F, Mustafa A (2008) The universal design, operation and maintenance guidelines for farm constructed wetlands (FCW) in temperate climates. Bioresource Technology 99:6780–6792

    Article  PubMed  CAS  Google Scholar 

  • Christensen TR (1993) Methane emission from Arctic tundra. Biochemistry 21:117–139

    CAS  Google Scholar 

  • Christensen TR, Ekberg A, Ström L, Mastepanov M, Panikov N, Oquist M, Svenson BH, Nykanen H, Martikainen PJ, Oskarsson H (2003) Factors controlling large scale variations in methane emissions from wetlands. Geophysical Research Letters 30:1–67

    Article  CAS  Google Scholar 

  • Clair TA, Warner BG, Robarts R, Murkin H, Lilley J, Mortsch L, Rubec C (1998) Canadian wetlands and climate change. In: Koshida G, Avis W (eds) Canada country study: climate impacts and adaptation. Environment, Ottawa, pp 189–218 Vol. VII: national sector volume

    Google Scholar 

  • Collins ME, Kuehl RJ (2001) Organic matter accumulation in organic soils. In: Richardson JL, Vepraskas MJ (eds) Wetland soils. Genesis, hydrology, landscapes, and classification. Lewis, CRC, Boca Raton, pp 137–162

    Google Scholar 

  • Craft CB, Richardson CJ (1998) Recent and long-term organic soil accretion and nutrient accumulation in the everglades. Soil Science Society of America Journal 62:834–843

    CAS  Google Scholar 

  • Crutzen PJ (1995) On the role of CH4 in atmospheric chemistry: sources sinks and possible reductions in atmospheric sources. Ambio 24:52–55

    Google Scholar 

  • D’Angelo EM, Reddy KR (1999) Regulators of heterotrophic microbial potentials in wetland soils. Soil Biology and Biochemistry 31:815–830

    Article  Google Scholar 

  • Daulat WE, Clymo RS (1998) Effects of temperature and water table on the efflux of methane from peatland surface cores. Atmospheric Environment 32:3207–3218

    Article  CAS  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  PubMed  CAS  Google Scholar 

  • Dick WA, Gregorich EG (2004) Developing and maintaining soil organic matter levels. In: Schjønning P, Elmholt S, Christensen BT (eds) Managing soil quality: challenges in modern agriculture. Centre for Agricultural Bioscience International, Cambridge, pp 103–120

    Chapter  Google Scholar 

  • Euliss NH Jr, Gleason RA, Olness A, McDougal RL, Murkin HR, Robarts RD, Bourbonniere RA, Warner BG (2006) North American prairie wetlands are important nonforested land-based carbon storage sites. Science of the Total Environment 361:179–188

    Article  PubMed  CAS  Google Scholar 

  • Fey A, Benckiser G, Ottow JCG (1999) Emissions of nitrous oxide from a constructed wetland using a groundfilter and macrophytes in wastewater purification of a dairy farm. Biology and Fertility of Soils 29:354–359

    Article  CAS  Google Scholar 

  • Fischer H, Pusch M (1999) Use of the [14C] leucine incorporation technique to measure bacterial production in river sediments and the epiphyton. Applied and Environmental Microbiology 65:4411–4418

    PubMed  CAS  Google Scholar 

  • Freeman C, Ostle N, Kang H (2001a) An enzymic ‘latch’ on a global carbon store. Nature 409:149

    Article  PubMed  CAS  Google Scholar 

  • Freeman C, Evans CD, Monteith DT, Reynolds B, Fenner N (2001b) Export of organic carbon from peat soils. Nature 412:785

    Article  PubMed  CAS  Google Scholar 

  • Freeman C, Ostle NJ, Fenner N, Kang H (2004) A regulatory role for phenol oxidase during decomposition in peatlands. Soil Biology and Biochemistry 36:1663–1667

    Article  CAS  Google Scholar 

  • Glatze S, Basiliko N, Moore T (2004) Carbon dioxide and methane production potentials of peats from natural, harvested and restored sites, Eastern Quebec, Canada. Wetlands 24:261–267

    Article  Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications 1:182–195

    Article  Google Scholar 

  • Gorham E, Underwood JK, Janssens JA, Freedman B, Maass W, Waller DH, Ogden JG (1998) The chemistry of streams in southwestern and central Nova Scotia, with particular reference to catchment vegetation and the influence of dissolved organic carbon primarily from wetlands. Wetlands 18:115–132

    Article  Google Scholar 

  • Grünfeld S, Brix H (1999) Methanogenesis and methane emissions: effects of water table, substrate type and presence of Phragmites australis. Aquatic Botany 64:63–75

    Article  Google Scholar 

  • Haberl H, Erb K-H, Krausmann F, Adensam H, Schulz N (2003) Land-use change and socioeconomic metabolism in Austria, part II: land-use scenarios for 2020. Land Use Policy 20:21–39

    Article  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiology and Molecular Biology Reviews 60:439–471

    CAS  Google Scholar 

  • Harris RC, Sebacher DI, Day FP (1982) Methane flux in the Great Dismal Swamp. Nature 297:673–674

    Article  Google Scholar 

  • Hartel PG (2005) The soil habitat. In: Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA (eds) Principles and applications of soil microbiology, 2nd edn. Prentice Hall, Upper Saddle River, pp 26–53

    Google Scholar 

  • Hedges JI, Keil RG, Benner R (1997) What happens to terrestrial organic matter in the ocean? Organic Geochemistry 27:195–212

    Article  CAS  Google Scholar 

  • Hedmark Å, Scholz M (2008) Review of environmental effects and treatment of runoff from storage and handling of wood. Bioresource Technology 99:5997–6009

    Article  PubMed  CAS  Google Scholar 

  • Hensel PF, Day JW Jr, Pont D (1999) Wetland vertical accretion and soil elevation change in the Rhône River delta, France: the importance of riverine flooding. Journal of Coastal Research 15:668–681

    Google Scholar 

  • Hobbie SE, Schimel JP, Trumbore SE, Randerson JR (2000) Controls over carbon storage and turnover in high-latitude soils. Global Change Biology 6:196–210

    Article  Google Scholar 

  • Holden J (2005) Peatland hydrology and carbon release: why small-scale process matters. Philosophical Transactions of the Royal Society 363:2891–2913

    Article  CAS  Google Scholar 

  • Hou AX, Chen GX, Wang ZP, Cleemput OV, Patrick WH (2000) Methane and nitrous oxide emissions from a rice field in relation to soil redox and microbiological processes. Soil Science Society of America Journal 64:2180–2186

    CAS  Google Scholar 

  • Ibekwe AM, Grieve CM, Lyon SR (2003) Characterization of microbial communities and composition in constructed dairy wetland wastewater effluent. Applied and Environmental Microbiology 69:5060–5069

    Article  PubMed  CAS  Google Scholar 

  • Inamori R, Gui P, Dass P, Matsumura M, Xu KQ, Kondo T, Ebie Y, Inamori Y (2007) Investigating CH4 and N2O emissions from eco-engineering wastewater treatment processes using constructed wetland microcosms. Process Biochemistry 42:363–373

    Article  CAS  Google Scholar 

  • Joabsson A, Christensen TR (2001) Methane emissions from wetlands and their relationship with vascular plants: an Arctic example. Global Change Biology 7:919–932

    Article  Google Scholar 

  • Joabsson A, Christensen TR, Wallein B (1999) Vascular plant controls on methane emissions from northern peatforming wetlands. Trends in Ecology & Evolution 14:385–388

    Article  Google Scholar 

  • Johansson AE, Kasimir-Klemedtsson A, Klemedtsson L, Svensson BH (2003) Nitrous oxide exchanges with the atmosphere of a constructed wetland treating wastewater. Tellus Series B—Chemical and Physical Meteorology 55:737–750

    Article  Google Scholar 

  • Johansson AE, Gustavsson AM, Oquist MG, Svensson BH (2004) Methane emissions from a constructed wetland treating wastewater: seasonal and spatial distribution and dependence on edaphic factors. Water Research 38:3960–3970

    Article  PubMed  CAS  Google Scholar 

  • Johnston CA (1991) Sediment and nutrient retention by freshwater wetlands: effects on surface water quality. Critical Review in Environmental Control 21:491–565

    Article  Google Scholar 

  • Juutinen S, Alm J, Martikainen P (2001) Effects of spring flood and water level draw-down on methane dynamics in the littoral zone of boreal lakes. Freshwater Biology 46:855–869

    Article  CAS  Google Scholar 

  • Kadlec RH, Knight RL (1996) Treatment wetlands. CRC, Boca Raton

    Google Scholar 

  • Kadlec RH, Knight RL, Vymazal J, Brix H, Cooper P, Haberl R (2000) Constructed wetlands for pollution control. Scientific and Technical Report No. 8. IWA Publishing, International Water Association, London

    Google Scholar 

  • Kang H, Freeman C (2002) The influence of hydrochemistry on methane emissions from two contrasting Northern wetlands. Water, Air, and Soil Pollution 141:263–272

    Article  CAS  Google Scholar 

  • Kelley CA, Martens CS, Ussler W (1995) Methane dynamics across a tidally flooded riverbank margin. Limnology and Oceanography 40:1112–1129

    Article  CAS  Google Scholar 

  • King GM (1996) In situ analyses of methane oxidation associated with the roots and rhizomes of a Bur Reed, Sparganium eurycarpum, in a Maine wetland. Applied and Environmental Microbiology 62:4548–4555

    PubMed  CAS  Google Scholar 

  • Kirschbaum MUF (1995) The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic storage. Soil Biology and Biochemistry 27:753–760

    Article  CAS  Google Scholar 

  • Knight RL, Wallace SD (2008) Treatment wetlands, 2nd edn. CRC, Boca Raton

    Google Scholar 

  • Knoblauch C, Zimmermann U, Blumenberg M, Michaelis W, Pfeiffer E (2008) Methane turnover and temperature response of methane-oxidizing bacteria in permafrost-affected soils of northeast Siberia. Soil Biology and Biochemistry 40:3004–3013

    Article  CAS  Google Scholar 

  • Kragh T, Søndergaard M (2004) Production and bioavailability of autochthonous dissolved organic carbon: effects of mesozooplankton. Aquatic Microbial Ecology 36:61–72

    Article  Google Scholar 

  • Krogh L, Noergaard A, Hermansen M, Greve MH, Balstroem T, Madsen HB (2003) Preliminary estimates of contemporary soil organic carbon stocks in Denmark using multiple datasets and four scaling-up methods. Agriculture, Ecosystems & Environment 96:19–28

    Google Scholar 

  • Lafleur PM, Moore TR, Roulet NT, Frolking S (2005) Ecosystem respiration in a cool temperate bog depends on peat temperature but not water table. Ecosystems 8:619–629

    Article  CAS  Google Scholar 

  • Landry GM, Maranger R, Brisson J, Chazarenc F (2009) Greenhouse gas production and efficiency of planted and artificially aerated constructed wetlands. Environmental Pollution 157:748–754

    Article  CAS  Google Scholar 

  • Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: a review. European Journal of Soil Biology 37:25–50

    Article  Google Scholar 

  • Li J, Wen Y, Zhou Q, Xingjie Z, Li X, Yang S, Lin T (2008) Influence of vegetation and substrate on the removal and transformation of dissolved organic matter in horizontal subsurface-flow constructed wetlands. Bioresource Technology 99:4990–4996

    Article  PubMed  CAS  Google Scholar 

  • Liblik LK, Moore TR, Bubier JL, Robinson SD (1997) Methane emissions from wetlands in the zone of discontinuous permafrost: Fort Simpson, Northwest Territories, Canada. Global Biogeochemical Cycles 11:485–494

    Article  CAS  Google Scholar 

  • Liikanen A, Huttunen JT, Karjalainen SM, Heikkinen K, Vaisanen TS, Nykanen H, Martikainen PJ (2006) Temporal and seasonal changes in greenhouse gas emissions from a constructed wetland purifying peat mining runoff water. Ecological Engineering 26:241–251

    Article  Google Scholar 

  • Limpens J, Berendse F, Blodau C, Canadell JG, Freeman C, Holden J, Roulet N, Rydin H, Schaepman-Strub G (2008) Peatlands and the carbon cycle: from local processes to global implications, a synthesis. Biogeosciences 5:1475–1491

    Article  CAS  Google Scholar 

  • Lloyd CR (2006) Annual carbon balance of a managed wetland meadow in the Somerset Levels, UK. Agricultural and Forest Meteorology 138:168–179

    Article  Google Scholar 

  • Machate T, Noll BHH, Kettrup A (1997) Degradation of Phenanthrene and hydraulic characteristics in a constructed wetland. Water Research 31:554–560

    Article  CAS  Google Scholar 

  • Maljanen M, Kohonen AR, Virkajarvi P, Martikainen PJ (2007) Fluxes and production of N2O, CO2 and CH4 in boreal agricultural soil during winter as affected by snowcover. Tellus 59:853–859

    Article  CAS  Google Scholar 

  • Malmer N, Johansson T, Olsrud M, Christensen TR (2005) Vegetation, climate changes and net carbon sequestration in a North-Scandinavian sub-arctic mire over 30 years. Global Change Biology 11:1895–1909

    Google Scholar 

  • Mander Ü, Teiter S, Augustin J (2005) Emission of greenhouse gases from constructed wetlands for wastewater treatment and from riparian buffer zones. Water Science and Technology 52:167–176

    PubMed  CAS  Google Scholar 

  • Mander Ü, Lõhmus K, Teiter S, Mauring T, Nurk K, Augustin J (2008) Gaseous fluxes in the nitrogen and carbon budgets of subsurface flow constructed wetlands. Science of the Total Environment 404:343–353

    Article  PubMed  CAS  Google Scholar 

  • McCarty GW, Ritchie JC (2002) Impact of soil movement on carbon sequestration in agricultural ecosystems. Environmental Pollution 116:423–430

    Article  PubMed  CAS  Google Scholar 

  • Mitra S, Wassmann R, Vlek PLG (2005) An appraisal of global wetland area and its organic carbon stock. Current Science 88:25–35

    CAS  Google Scholar 

  • Mitsch WJ, Gosselink JG (2007) Wetlands, 4th edn. Wiley, New York

    Google Scholar 

  • Moore TR, Dalva M (1993) The influence of temperature and water table position on carbon dioxide and methane emissions from laboratory columns of peatland soils. Journal of Soil Science 44:651–64

    Article  CAS  Google Scholar 

  • Moore TR, Dalva M (1997) Methane and carbon dioxide exchange potentials of peat soils in aerobic and anaerobic laboratory incubations. Soil Biology and Biochemistry 29:1157–1164

    Article  CAS  Google Scholar 

  • Moore TR, Roulet NT (1993) Methane flux: water table relations in northern wetlands. Geophysical Research Letters 20:587–590

    Article  CAS  Google Scholar 

  • Moore TR, Roulet NT (1995) Methane emissions from Canadian peatlands. In: Lal R, Kimble J, Levine E, Stewart BA (eds) Soils and global change. Lewis, Boca Raton, pp 153–164 Chapter 12

    Google Scholar 

  • Moore TR, Roulet NT, Waddington JM (1998) Uncertainty in predicting the effect of climatic change on the carbon cycling of Canadian peatlands. Climate Change 40:229–245

    Article  CAS  Google Scholar 

  • Moore TR, Bubier JL, Frolking SE, Lafleur PM, Roulet NT (2002) Plant biomass and production and CO2 exchange in an ombrotrophic bog. Journal of Ecology 90:25–36

    Article  Google Scholar 

  • Mørkved PT, Dörsch P, Henriksen TM, Bakken LR (2006) N2O emissions and product ratios of nitrification and denitrification as affected by freezing and thawing. Soil Biology and Biochemistry 38:3411–3420

    Article  CAS  Google Scholar 

  • Ogden MH (2001) Atmospheric carbon reduction and carbon sequestration in small community wastewater treatment systems using constructed wetlands. In: Mancl K (ed) Proceedings of on-site wastewater treatment. 9th National symposium on individual and small community sewage systems. American Society of Agricultural Engineers, Fort Worth, pp 674–683

    Google Scholar 

  • Öquist MG, Petrone K, Nilsson M, Klemedtsson L (2007) Nitrification controls N2O production rates in frozen boreal forest soil. Soil Biology and Biochemistry 39:1809–1811

    Article  CAS  Google Scholar 

  • Picek T, Cızkova H, Dusek J (2007) Greenhouse gas emissions from a constructed wetland—plants as important sources of carbon. Ecological Engineering 31:98–106

    Article  Google Scholar 

  • Pind A, Freeman C, Lock MA (1994) Enzymatic degradation of phenolic materials in peatlands—measurement of phenol oxidase activity. Plant and Soil 159:227–231

    Article  CAS  Google Scholar 

  • Pinney ML, Westerhoff PKM, Bakerm L (2000) Transformations in dissolved organic carbon through constructed wetlands. Water Research 34:1897–1911

    Article  CAS  Google Scholar 

  • Price JS, Waddington MJ (2000) Advances in Canadian wetland hydrology and biogeochemistry. Hydrological Processes 14:1579–1589

    Article  Google Scholar 

  • Qualls RG, Haines BL (1992) Biodegradability of dissolved organic matter in forest throughfall, soil solution, and stream water. Soil Science Society of America Journal 56:578–586

    Article  CAS  Google Scholar 

  • Quanrud DM, Karpiscak MM, Lansey KE, Arnold RG (2004) Transformation of effluent organic matter during subsurface wetland treatment in the Sonoran Desert. Chemosphere 54:777–788

    Article  PubMed  CAS  Google Scholar 

  • Raghoebarsing AA, Smolders AJP, Schmid MC, Rijpstra WIC, Wolters-Arts M, Derksen J, Jetten MSM, Schouten S, Damste JSS, Lamers LPM, Roelofs JGM, den Camp HJMO, Strous M (2005) Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature 436:1153–1156

    Article  PubMed  CAS  Google Scholar 

  • Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJP, Ettwig KF, Rijpstra WIC, Schouten S, Damste JSS, Op den Camp HJM, Jetten MSM, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918–921

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen PE, Albrecht SL, Smiley RW (1998) Soil C and N changes under tillage and cropping systems in semi-arid Pacific Northwest agriculture. Soil and Tillage Research 47:197–205

    Article  Google Scholar 

  • Reddy KR, D’Angelo EM (1997) Biogeochemical indicators to evaluate pollutant removal efficiency in constructed wetlands. Water Science and Technology 35:1–10

    Article  CAS  Google Scholar 

  • Reddy KR, Delaune RD (2008) Biogeochemistry of wetlands: science and applications. CRC, Taylor and Francis Group, Boca Raton

    Google Scholar 

  • Roulet NT, Ash R, Quinton W, Moore T (1993) Methane flux from drained northern peatlands: effect of a persistent water table lowering on flux. Global Biogeochemistry Cycle 7:749–769

    Article  CAS  Google Scholar 

  • Salm J-O, Kimmel K, Uri V, Mander Ü (2009) Global warming potential of drained and undrained peatlands in Estonia: a synthesis. Wetlands 29 (in press)

  • Savage KE, Davidson EA (2001) Inter annual variation of soil respiration in two New England forests. Global Biogeochemical Cycles 15:337–350

    Article  CAS  Google Scholar 

  • Scanlon D, Moore TR (2000) Carbon dioxide production from peatland soil profiles: the influence of temperature, oxic/anoxic conditions and substrate. Soil Science 165:153–60

    Article  CAS  Google Scholar 

  • Schipper LA, Reddy KR (1994) Methane production and emission from four reclaimed and pristine wetlands of southeastern United States. Soil Science Society of America 58:1270–1275

    Article  CAS  Google Scholar 

  • Schlesinger WH (1991) Biogeochemistry: an analysis of global change. Academic, San Diego

    Google Scholar 

  • Schlesinger WH (1997) An analysis of global change. Academic, Harcourt Brace and Company, San Diego

    Google Scholar 

  • Scholz M (2006) Wetland systems to control urban runoff. Elsevier, Amsterdam

    Google Scholar 

  • Scholz M, Trepel M (2004a) Hydraulic characteristics of groundwater-fed open ditches in a peatland. Ecological Engineering 23:29–45

    Article  Google Scholar 

  • Scholz M, Trepel M (2004b) Water quality characteristics of vegetated groundwater-fed ditches in a riparian peatland. Science of the Total Environment 332:109–122

    Article  PubMed  CAS  Google Scholar 

  • Scholz M, Harrington R, Carroll P, Mustafa A (2007) The integrated constructed wetlands (ICW) concept. Wetlands 27:337–354

    Article  Google Scholar 

  • Shepherd D, Burgess D, Jickells T, Andrew JS, Cave R, Turner RK, Aldridge J, Parker ER, Young E (2007) Modelling the effects and economics of managed realignment on the cycling and storage of nutrients, carbon and sediments in the Blackwater estuary, UK. Estuarine, Coastal and Shelf Science 73:355–367

    Article  Google Scholar 

  • Sherry S, Ramon A, Eric M, Richard E, Barry W, Peter D, Susan T (1998) Precambrian shield wetlands: hydrologic control of the sources and export of dissolved organic matter. Climatic Change 40:167–188

    Article  Google Scholar 

  • Sleytr K, Tietz A, Langengraber G, Haberl R (2007) Investigation of bacterial removal during the filtration process in constructed wetlands. Science of the Total Environment 380:173–180

    Article  PubMed  CAS  Google Scholar 

  • Smith LK, Lewis WM, Chanton JP, Cronin G, Hamilton SK (2000) Methane emissions from the Orinoco River floodplain, Venezuela. Biogeochemistry 51:113–140

    Article  Google Scholar 

  • Søvik AK, Augustin J, Heikkinen K, Huttunen JT, Necki JM, Karjalainen SM, Kløve B, Liikanen A, Mander Ü, Puustinen M, Teiter S, Wachniew P (2006) Emission of the greenhouse gases nitrous oxide and methane from constructed wetlands in Europe. Journal of Environmental Quality 35:2360–2373

    Article  PubMed  CAS  Google Scholar 

  • Stadmark J, Leonardson L (2005) Emissions of greenhouse gases from ponds constructed for nitrogen removal. Ecological Engineering 25:542–551

    Article  Google Scholar 

  • Stern J, Wang Y, Gu B, Newman J (2007) Distribution and turnover of carbon in natural and constructed wetlands in the Florida Everglades. Applied Geochemistry 22:1936–1948

    Article  CAS  Google Scholar 

  • Stottmeister U, Wießner A, Kuschk P, Kappelmeyer U, Kastner M, Bederski O, Muller RA, Moormann R (2003) Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnology Advances 22:93–117

    Article  PubMed  CAS  Google Scholar 

  • Ström L, Christensen TR (2007) Below ground carbon turnover and greenhouse gas exchanges in a sub-arctic wetland. Soil Biology Biochemistry 39:1689–1698

    Article  CAS  Google Scholar 

  • Ström L, Ekberg A, Mastepanov M, Christensen TR (2003) The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland. Global Change Biology 9:1185–1192

    Article  Google Scholar 

  • Tai PD, Li PA, Sun TH, He YW, Zhou QZ, Gong ZQ, Mizuochi M, Inamori Y (2002) Greenhouse gas emissions from a constructed wetland for municipal sewage treatment. Journal of Environmental Science 14:27–33

    CAS  Google Scholar 

  • Tanner CC (2001) Plants as ecosystem engineers in subsurface-flow treatment wetlands. Water Science and Technology 44:9–17

    PubMed  CAS  Google Scholar 

  • Tanner CC, Adams DD, Downes MT (1997) Methane emissions from constructed wetlands treating agricultural wastewaters. Journal of Environmental Quality 26:1056–1062

    Article  CAS  Google Scholar 

  • Teiter S, Mander Ü (2005) Emission of N2O, N2, CH4, and CO2 from constructed wetlands for wastewater treatment and from riparian buffer zones. Ecological Engineering 25:528–541

    Article  Google Scholar 

  • Tietz A, Langergraber G, Watzinger A, Haberl R, Kirschner AKT (2008) Bacterial carbon utilization in vertical subsurface flow constructed wetlands. Water Research 42:1622–1634

    Article  PubMed  CAS  Google Scholar 

  • Tipping PW, Center TD (2002) Evaluating acephate for insecticide exclusion of Oxyops vitiosa (Coleoptera: Curculionidae) from Melaleuca quinquenervia. Florida Entomologist 85:458–463

    Article  CAS  Google Scholar 

  • Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Tank AK, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University, Cambridge, pp 235–336

    Google Scholar 

  • Trettin CC, Jurgensen MF (2003) Carbon cycling in wetland forest soils. In: Kimble J, Birdsie R, Lal R (eds) Carbon sequestration in US forests. Lewis, Boca Raton, pp 311–328

    Google Scholar 

  • Trumbore SE, Harden JW (1997) Accumulation and turnover of carbon in organic and mineral soils of the BOREAS northern study area. Journal of Geophysical Research 102:817–830

    Article  Google Scholar 

  • Tuittila ES, Komulainen VM, Vasander H, Nykanen H, Martikainen PJ, Laine K (2000) Methane dynamics of a restored cut-away peatland. Global Change Biology 6:569–581

    Article  Google Scholar 

  • Turcq B, Cordeiro RC, Albuquerque ALS, Sifeddine A, Simoes Filho FFL, Souza AG, Abrao JJ, Oliveira FBL, Silva AO, Capitaneo JA (2002) Accumulation of organic carbon in five Brazilian lakes during the Holocene. Sedimentary Geology 148:319–342

    Article  CAS  Google Scholar 

  • Turetsky M, Wieder K, Halsey L, Vitt D (2002) Current disturbance and the diminishing peatland carbon sink. Geophysical Research Letters 29:21-1–21-4

    Article  Google Scholar 

  • Turunen C, Tomppo E, Tolonen K, Reinkainen E (2002) Estimating carbon accumulation rates of undrained mires in Finland: application to boreal and subarctic regions. Holocene 12:69–80

    Article  Google Scholar 

  • Updegraff K, Bridgham SD, Pastor J, Weishampel P, Harth C (2001) Response of CO2 and CH4 emissions in peatlands to warming and water-table manipulation. Ecological Applications 11:311–326

    Google Scholar 

  • van Bochove E, Thériault G, Rochette P (2001) Thick ice layers in snow and frozen soil affecting gas emissions from agricultural soils during winter. Journal of Geophysical Research 106:23061–23071

    Article  Google Scholar 

  • Van der Peijl MJ, Verhoeven JTA (1999) A model of carbon, nitrogen and phosphorus dynamics and their interactions in river marginal wetlands. Ecological Modelling 118:95–130

    Article  Google Scholar 

  • Vavrova P, Penttila T, Laiho R (2009) Decomposition of Scots pine fine woody debris in boreal conditions: Implications for estimating carbon pools and fluxes. Forest Ecology and Management 257:401–412

    Article  Google Scholar 

  • Voelker BM, Kogut MB (2001) Interpretation of metal speciation data in coastal waters: the effects of humic substances on copper binding as a test case. Marine Chemistry 74:303–318

    Article  CAS  Google Scholar 

  • Vymazal J (2007) Removal of nutrients in various types of constructed wetlands. Science of the Total Environment 380:48–65

    Article  PubMed  CAS  Google Scholar 

  • Waddington JM, Roulet NT, Swanson RV (1996) Water table control of CH4 emission enhancement by vascular plants in boreal peatlands. ournal of Geophysical Research 101:775–785

    Google Scholar 

  • Waddington JM, Rotenberg PA, Warren FJ (2001) Peat CO2 production in a natural and cutover peatland: implications for restoration. Biogeochemistry 54:115–130

    Article  CAS  Google Scholar 

  • Walter B, Heimann M (2000) A process-based, climate-sensitive model to derive methane emissions from natural wetlands: application to five wetland sites, sensitivity to model parameters and climate. Global Biogeochemical Cycles 14:745–765

    Article  CAS  Google Scholar 

  • Weishampel P, Kolka R, King JY (2009) Carbon pools and productivity in a 1-km2 heterogeneous forest and peatlandmosaic in Minnesota, USA. Forest Ecology and Management 257:747–754

    Article  Google Scholar 

  • Whalen SC (2005) Biogeochemistry of methane exchange between natural wetlands and the atmosphere. Environmental Engineering Science 22:73–94

    Article  CAS  Google Scholar 

  • Whitting GJ, Chanton JP (2001) Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration. Tellus 53:521–528

    Google Scholar 

  • Wild U, Lenz A, Kamp T, Heinz S, Pfadenhauer J (2002) Vegetation development, nutrient removal and trace gas fluxes in constructed Typha wetlands. In: Mander U, Jenssen PD (eds) Natural wetlands for wastewater treatment in cold climates, vol 12. WIT, Southampton, pp 101–125 Advance ecology and science

    Google Scholar 

  • Williams CJ, Shingara EA, Yavitt JB (2000) Phenol oxidase activity in peatlands in New York State: response to summer drought and peat type. Wetlands 20:416–421

    Article  Google Scholar 

  • Wolf DC, Wagner GH (2005) Carbon transformations and soil organic matter formation. In: Sylvia DM, Fuhrman J, Hartel PG, Zuberer DA (eds) Principles and applications of soil microbiology, 2nd edn. Prentice Hall, Upper Saddle River, pp 285–332

    Google Scholar 

  • Wuebbles DJ, Hayhoe K (2002) Atmospheric methane and global change. Earth Science Reviews 57:177–210

    Article  CAS  Google Scholar 

  • Wynn TM, Liehr SK (2001) Development of a constructed subsurface-flow wetland simulation model. Ecological Engineering 16:519–536

    Article  Google Scholar 

  • Xiaonan D, Xiaoke W, Lu F, Zhiyun O (2008) Primary evaluation of carbon sequestration potential of wetlands in China. Acta Ecologica Sinica 28:463–469

    Google Scholar 

  • Xue Y, Kovacic DA, David MB, Gentry LE, Mulvaney RL, Lindau CW (1999) In situ measurements of denitrification in constructed wetlands. Journal of Environmental Quality 28:263–269

    Article  CAS  Google Scholar 

  • Yu Z, Apps MJ, Bhatti JS (2002) Implication of floristic and environmental variation for carbon cycle dynamics in boreal forest ecosystems of Central Canada. Journal of Vegetation Science 13:327–340

    Article  Google Scholar 

  • Yurova A, Lankreijer H (2007) Carbon storage in the organic layers of boreal forest soils under various moisture conditions: a model study for Northern Sweden sites. Ecological Modelling 204:475–484

    Article  Google Scholar 

  • Zhang JB, Song CC, Yang WY (2005) Cold season CH4, CO2 and N2O from freshwater marshes in northeast China. Chemosphere 59:1703–1705

    Article  PubMed  CAS  Google Scholar 

  • Zhu T, Sikora FJ (1995) Ammonium and nitrate removal in vegetated and unvegetated gravel bed microcosm wetlands. Water Science and Technology 32:219–228

    Article  CAS  Google Scholar 

  • Zweifel UL (1999) Factors controlling accumulation of labile dissolved organic carbon in the Gulf of Riga. Estuarine, Coastal and Shelf Science 48:357–370

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by The Scientific and Technological Research Council of Turkey. An International Post-doctoral Research Scholarship was awarded to Birol Kayranli. Iller Bank (Turkey) is thanked for supporting the lead author financially. Rory Harrington and James Burn contributed to the collection of references, and commented on draft versions of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miklas Scholz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kayranli, B., Scholz, M., Mustafa, A. et al. Carbon Storage and Fluxes within Freshwater Wetlands: a Critical Review. Wetlands 30, 111–124 (2010). https://doi.org/10.1007/s13157-009-0003-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-009-0003-4

Keywords

Navigation