Skip to main content
Log in

miR-9 inhibits the metastatic ability of hepatocellular carcinoma via targeting beta galactoside alpha-2,6-sialyltransferase 1

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Glycosylation of cell surface proteins regulates critical cellular functions, including invasion and metastasis in cancer cells. Emerging evidence has shown that microRNAs (miRNAs) are involved in regulating both the glycosylation modifications on cell surface and the progression of cancer. In this study, we investigated the role of miR-9 in α-2,6-linked sialylation and the metastasis of mouse hepatocellular carcinoma (HCC). According to array-based miRNA expression profiling data of HCC cell lines Hepa1–6, Hca-P, and Hca-F with different lymphatic metastatic capacities, reverse correlation was found between miR-9 expression levels and the metastatic potential in these HCC cells. Additionally, β-galactoside α-2,6-sialyltransferase 1 (St6gal1) expression level is associated negatively with miR-9 and positively with metastatic potential. Bioinformatics analysis indicated that miR-9 could target St6gal1, which was verified by luciferase reporter assays. miR-9 overexpression reduced expression of St6gal1, which subsequently suppressed HCC cells metastatic potential. Moreover, upregulation of miR-9 could inhibit integrin-β1/FAK-mediated cell motility and migration signaling in mouse HCC cells. Together, our results suggest that miR-9 could act as a tumor suppressor and regulate mouse HCC cells migration and invasion by inhibiting the α-2,6-linked sialylation. This finding may provide insight into the relationship between abnormal miRNA expression and aberrant cell surface glycosylation during tumor lymphatic metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Britain CM, Holdbrooks AT, Anderson JC, Willey CD, Bellis SL (2018) Sialylation of EGFR by the ST6Gal-I sialyltransferase promotes EGFR activation and resistance to gefitinib-mediated cell death. J Ovarian Res 11:12

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chen X, Wang L, Zhao Y, Yuan S, Qiang W, Zhu X, Niang B, Wang S, Zhang J (2016) ST6Gal-I modulates docetaxel sensitivity in human hepatocarcinoma cells via the p38 MAPK/caspase pathway. Oncotarget 7:51955–51964

    PubMed  PubMed Central  Google Scholar 

  4. Deng B, Wang B, Fang J, Zhu X, Cao Z, Lin Q, Zhou L, Sun X (2016) MiRNA-203 suppresses cell proliferation, migration and invasion in colorectal cancer via targeting of EIF5A2. Sci Rep 6:28301. https://doi.org/10.1038/srep28301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Dennis JW, Granovsky M, Warren CE (1999) Glycoprotein glycosylation and cancer progression. Biochim Biophys Acta Gen Subj 1473:21–34

    Article  CAS  Google Scholar 

  6. Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6:259–269

    Article  PubMed  CAS  Google Scholar 

  7. Fu X, Meng Z, Liang W et al (2014) miR-26a enhances miRNA biogenesis by targeting Lin28B and Zcchc11 to suppress tumor growth and metastasis. Oncogene 33:4296–4306

    Article  PubMed  CAS  Google Scholar 

  8. Fu XT, Shi YH, Zhou J, Peng YF, Liu WR, Shi GM, Gao Q, Wang XY, Song K, Fan J, Ding ZB (2017) MicroRNA-30a suppresses autophagy-mediated anoikis resistance and metastasis in hepatocellular carcinoma. Cancer Lett 412:108–117. https://doi.org/10.1016/j.canlet.2017.10.012

    Article  PubMed  CAS  Google Scholar 

  9. Gao Y, Liu T, Huang Y (2015) MicroRNA-134 suppresses endometrial cancer stem cells by targeting POGLUT1 and Notch pathway proteins. FEBS Lett 589:207–214

    Article  PubMed  CAS  Google Scholar 

  10. González-Vallinas M, Molina S, Vicente G, Zarza V, Martín-Hernández R, García-Risco MR, Fornari T, Reglero G, De Molina AR (2014) Expression of microRNA-15b and the glycosyltransferase GCNT3 correlates with antitumor efficacy of Rosemary diterpenes in colon and pancreatic cancer. PLoS One 9:e98556

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Guo Y, Li S, Qu J, Wang S, Dang Y, Fan J, Yu S, Zhang J (2011) MiR-34a inhibits lymphatic metastasis potential of mouse hepatoma cells. Mol Cell Biochem 354:275–282

    Article  PubMed  CAS  Google Scholar 

  12. Guo Y, Li S, Qu J, Ye L, Wang S, Fan J, Wang Q, Zhang J (2014) Let-7c inhibits metastatic ability of mouse hepatocarcinoma cells via targeting mannoside acetylglucosaminyltransferase 4 isoenzyme A. Int J Biochem Cell Biol 53:1–8

    Article  PubMed  CAS  Google Scholar 

  13. Higashi T, Hayashi H, Ishimoto T, Takeyama H, Kaida T, Arima K, Taki K, Sakamoto K, Kuroki H, Okabe H (2015) miR-9-3p plays a tumour-suppressor role by targeting TAZ (WWTR1) in hepatocellular carcinoma cells. Br J Cancer 113:252–258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Huang Y, Shen XJ, Zou Q, Wang SP, Tang SM, Zhang GZ (2011) Biological functions of microRNAs: a review. J Physiol Biochem 67:129–139. https://doi.org/10.1007/s13105-010-0050-6

    Article  PubMed  CAS  Google Scholar 

  15. Hung WC, Chiang CH (2017) Up-regulation of sialyltransferases increases lymphatic metastasis in pancreatic cancer via the integrin-mediated pathway. Pancreatology 17:S19

    Article  Google Scholar 

  16. Jia L, Wang S, Zhou H, Cao J, Hu Y, Zhang J (2006) Caveolin-1 up-regulates CD147 glycosylation and the invasive capability of murine hepatocarcinoma cell lines. Int J Biochem Cell Biol 38:1584–1593

    Article  PubMed  CAS  Google Scholar 

  17. Jungjin Park ML (2013) Increasing the α-2,6-sialylation of glycoproteins may contribute to metastatic spread and therapeutic resistance in colorectal cancer. Gut Liver 7:629–641

    Article  CAS  Google Scholar 

  18. Krichevsky AM, Sonntag KC, Isacson O, Kosik KS (2006) Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 24:857–864

    Article  PubMed  CAS  Google Scholar 

  19. Lee YS, Nakahara K, Pham JW, Kim K, He Z, Sontheimer EJ, Carthew RW (2004) Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117:69–81

    Article  PubMed  CAS  Google Scholar 

  20. Lehmann U, Hasemeier B, Christgen M, Müller M, Römermann D, Länger F, Kreipe H (2008) Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer. J Pathol 214:17–24

    Article  PubMed  CAS  Google Scholar 

  21. Li Y, Qiu C, Tu J, Geng B, Yang J, Jiang T, Cui Q (2013) HMDD v2. 0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res 42(D1):D1070–D1074

  22. Li T, Dong ZR, Guo ZY, Wang CH, Zhi XT, Zhou JW, Li DK, Chen ZT, Chen ZQ, Hu SY (2015) Mannose-mediated inhibitory effects of PA-MSHA on invasion and metastasis of hepatocellular carcinoma via EGFR/Akt/IκBβ/NF-κB pathway. Liver Int 35:1416–1429

    Article  PubMed  CAS  Google Scholar 

  23. Schultz MJ, Swindall AF, Wright JW, Sztul ES, Landen CN, Bellis SL (2013) ST6Gal-I sialyltransferase confers cisplatin resistance in ovarian tumor cells. J Ovarian Res 6:25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Seales EC, Jurado GA, Brunson BA, Wakefield JK, Frost AR, Bellis SL (2005) Hypersialylation of beta1 integrins, observed in colon adenocarcinoma, may contribute to cancer progression by up-regulating cell motility. Cancer Res 65:4645

    Article  PubMed  CAS  Google Scholar 

  25. Seguin L, Desgrosellier JS, Weis SM, Cheresh DA (2015) Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol 25:234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Shah MH, Telang SD, Shah PM, Patel PS (2008) Tissue and serum α2-3- and α2-6-linkage specific sialylation changes in oral carcinogenesis. Glycoconj J 25:279–290

    Article  PubMed  CAS  Google Scholar 

  27. Stokes JB, Adair SJ, Slackdavis JK, Walters DM, Tilghman RW, Hershey ED, Lowrey B, Thomas KS, Bouton AH, Hwang RF (2011) Inhibition of focal adhesion kinase by PF-562,271 inhibits the growth and metastasis of pancreatic cancer concomitant with altering the tumor microenvironment. Mol Cancer Ther 10:2135–2145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Tan HX, Qian W, Chen LZ, Huang XH, Chen JS, Fu XH, Cao LQ, Chen XL, Wen L, Zhang L (2010) MicroRNA-9 reduces cell invasion and E-cadherin secretion in SK-Hep-1 cell. Med Oncol 27:654

    Article  PubMed  CAS  Google Scholar 

  29. Zhao Y, Li Y, Ma H, Dong W, Zhou H, Song X, Zhang J, Jia L (2014) Modification of sialylation mediates the invasive properties and chemosensitivity of human hepatocellular carcinoma. Mol Cell Proteomics 13:520–536

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

The authors would like to gratefully acknowledge support from the Natural Science Foundation of China (21502015, 31570802) and the Fundamental Research Funds for the Central Universities (DUT17JC21, DUT18ZD208, DUT18LAB09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianing Zhang.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflicts of interest.

Electronic supplementary material

ESM 1

(DOCX 957 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Liu, Y., Fu, X. et al. miR-9 inhibits the metastatic ability of hepatocellular carcinoma via targeting beta galactoside alpha-2,6-sialyltransferase 1. J Physiol Biochem 74, 491–501 (2018). https://doi.org/10.1007/s13105-018-0642-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-018-0642-0

Keywords

Navigation