Skip to main content

Advertisement

Log in

Recombinant Adiponectin Peptide Ameliorates Brain Injury Following Intracerebral Hemorrhage by Suppressing Astrocyte-Derived Inflammation via the Inhibition of Drp1-Mediated Mitochondrial Fission

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

An Author Correction to this article was published on 28 September 2022

This article has been updated

Abstract

Intracerebral hemorrhage (ICH) is a life-threatening subtype of cerebral stroke with high morbidity and mortality; however, effective treatment for ICH is still lacking. Adiponectin (APN) is a a kind of fat-derived plasma protein with beneficial effects in cerebrovascular disorders. In this study, we aimed to investigate the protective effects of recombinant APN peptide (APNp) on brain injury after ICH in adult male C57BL/6J mice and further explored the underlying molecular mechanisms of these effects. APNp treatment exerted dose-dependent neuroprotective effects including improved neurological function, decreased brain edema, reduced neural apoptosis, and alleviated blood–brain barrier (BBB) disruption in ICH mice. We found the massive accumulation of APNp on reactive astrocytes around brain microvessels under hemorrhage conditions by immunofluorescence analysis. mRNA sequencing (mRNA-seq) and transcriptome analysis indicated that APNp significantly attenuated the inflammatory response and mitochondrial respiratory dysfunction in astrocytes. Further study revealed that this process was, at least in part, reliant on the inhibition of Drp1-mediated excessive mitochondrial fission. More specifically, APNp increased AMP-activated protein kinase (AMPK) activation-dependent Drp1 serine 637 (S637) phosphorylation, which inhibited the translocation of Drp1 to the mitochondrial membrane and reduced mitochondrial fragmentation and the production of mitochondrial superoxide, ultimately attenuating inflammatory brain injury induced by hemorrhage. In conclusion, we propose APNp as a potential therapeutic agent for ICH. We provide the first mechanistic evidence that APNp can modulate Drp1-mediated mitochondrial fission, which then contributes to alleviating astrocyte-derived inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Al-Shahi Salman R, Frantzias J, Lee RJ, Lyden PD, Battey TWK, Ayres AM, et al. Absolute risk and predictors of the growth of acute spontaneous intracerebral haemorrhage: a systematic review and meta-analysis of individual patient data. Lancet Neurol. 2018;17(10):885–94. https://doi.org/10.1016/s1474-4422(18)30253-9.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Biffi A, Anderson CD, Battey TW, Ayres AM, Greenberg SM, Viswanathan A, et al. Association between blood pressure control and risk of recurrent intracerebral hemorrhage. Jama. 2015;314(9):904–12. https://doi.org/10.1001/jama.2015.10082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Qureshi AI. Intracerebral hemorrhage specific intensity of care quality metrics. Neurocrit Care. 2011;14(2):291–317. https://doi.org/10.1007/s12028-010-9453-z.

    Article  PubMed  Google Scholar 

  4. Wang Z, Zhou F, Dou Y, Tian X, Liu C, Li H, et al. Melatonin alleviates Intracerebral hemorrhage-induced secondary brain injury in rats via suppressing apoptosis, inflammation, oxidative stress, DNA damage, and mitochondria injury. Transl Stroke Res. 2018;9(1):74–91. https://doi.org/10.1007/s12975-017-0559-x.

    Article  CAS  PubMed  Google Scholar 

  5. Zhu H, Wang Z, Yu J, Yang X, He F, Liu Z, et al. Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage. Prog Neurobiol. 2019;178:101610. https://doi.org/10.1016/j.pneurobio.2019.03.003.

    Article  CAS  PubMed  Google Scholar 

  6. Lan X, Han X, Li Q, Yang QW, Wang J. Modulators of microglial activation and polarization after intracerebral haemorrhage. Nat Rev Neurol. 2017;13(7):420–33. https://doi.org/10.1038/nrneurol.2017.69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang P, Wang T, Zhang D, Zhang Z, Yuan S, Zhang J, et al. Exploration of MST1-mediated secondary brain injury induced by intracerebral hemorrhage in rats via hippo signaling pathway. Transl Stroke Res. 2019;10:729–43. https://doi.org/10.1007/s12975-019-00702-1.

    Article  CAS  PubMed  Google Scholar 

  8. Graeber MB, Li W, Rodriguez ML. Role of microglia in CNS inflammation. FEBS Lett. 2011;585(23):3798–805. https://doi.org/10.1016/j.febslet.2011.08.033.

    Article  CAS  PubMed  Google Scholar 

  9. Li M, Li Z, Yao Y, Jin WN, Wood K, Liu Q, et al. Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity. Proc Natl Acad Sci U S A. 2017;114(3):E396–e405. https://doi.org/10.1073/pnas.1612930114.

    Article  CAS  PubMed  Google Scholar 

  10. Jana M, Anderson JA, Saha RN, Liu X, Pahan K. Regulation of inducible nitric oxide synthase in proinflammatory cytokine-stimulated human primary astrocytes. Free Radic Biol Med. 2005;38(5):655–64. https://doi.org/10.1016/j.freeradbiomed.2004.11.021.

    Article  CAS  PubMed  Google Scholar 

  11. Min KJ, Yang MS, Kim SU, Jou I, Joe EH. Astrocytes induce hemeoxygenase-1 expression in microglia: a feasible mechanism for preventing excessive brain inflammation. J Neurosci. 2006;26(6):1880–7. https://doi.org/10.1523/jneurosci.3696-05.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang J. Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog Neurobiol. 2010;92(4):463–77. https://doi.org/10.1016/j.pneurobio.2010.08.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 2003;423(6941):762–9. https://doi.org/10.1038/nature01705.

    Article  CAS  PubMed  Google Scholar 

  14. Snehalatha C, Mukesh B, Simon M, Viswanathan V, Haffner SM, Ramachandran A. Plasma adiponectin is an independent predictor of type 2 diabetes in Asian Indians. Diabetes Care. 2003;26(12):3226–9. https://doi.org/10.2337/diacare.26.12.3226.

    Article  PubMed  Google Scholar 

  15. Masamoto Y, Arai S, Sato T, Yoshimi A, Kubota N, Takamoto I, et al. Adiponectin enhances antibacterial activity of hematopoietic cells by suppressing bone marrow inflammation. Immunity. 2016;44(6):1422–33. https://doi.org/10.1016/j.immuni.2016.05.010.

    Article  CAS  PubMed  Google Scholar 

  16. Tao L, Gao E, Jiao X, Yuan Y, Li S, Christopher TA, et al. Adiponectin cardioprotection after myocardial ischemia/reperfusion involves the reduction of oxidative/nitrative stress. Circulation. 2007;115(11):1408–16. https://doi.org/10.1161/circulationaha.106.666941.

    Article  CAS  PubMed  Google Scholar 

  17. Antoniades C, Antonopoulos AS, Tousoulis D, Stefanadis C. Adiponectin: from obesity to cardiovascular disease. Obes Rev. 2009;10(3):269–79. https://doi.org/10.1111/j.1467-789X.2009.00571.x.

    Article  CAS  PubMed  Google Scholar 

  18. Ilhan N, Susam S, Canpolat O, Belhan O. The emerging role of leptin, adiponectin and visfatin in ischemic/hemorrhagic stroke. Br J Neurosurg. 2019:1–4. https://doi.org/10.1080/02688697.2019.1578862.

  19. Efstathiou SP, Tsioulos DI, Tsiakou AG, Gratsias YE, Pefanis AV, Mountokalakis TD. Plasma adiponectin levels and five-year survival after first-ever ischemic stroke. Stroke. 2005;36(9):1915–9. https://doi.org/10.1161/01.STR.0000177874.29849.f0.

    Article  CAS  PubMed  Google Scholar 

  20. Nishimura M, Izumiya Y, Higuchi A, Shibata R, Qiu J, Kudo C, et al. Adiponectin prevents cerebral ischemic injury through endothelial nitric oxide synthase dependent mechanisms. Circulation. 2008;117(2):216–23. https://doi.org/10.1161/circulationaha.107.725044.

    Article  CAS  PubMed  Google Scholar 

  21. Qiao L, Kinney B, Yoo HS, Lee B, Schaack J, Shao J. Adiponectin increases skeletal muscle mitochondrial biogenesis by suppressing mitogen-activated protein kinase phosphatase-1. Diabetes. 2012;61(6):1463–70. https://doi.org/10.2337/db11-1475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang S, Li D, Huang C, Wan Y, Wang J, Zan X, et al. Overexpression of adiponectin alleviates intracerebral hemorrhage-induced brain injury in rats via suppression of oxidative stress. Neurosci Lett. 2018;681:110–6. https://doi.org/10.1016/j.neulet.2018.05.050.

    Article  CAS  PubMed  Google Scholar 

  23. Miyatake Y, Shiuchi T, Ueta T, Taniguchi Y, Futami A, Sato F, et al. Intracerebroventricular injection of adiponectin regulates locomotor activity in rats. J Med Investig. 2015;62(3–4):199–203. https://doi.org/10.2152/jmi.62.199.

    Article  Google Scholar 

  24. Rak A, Mellouk N, Froment P, Dupont J. Adiponectin and resistin: potential metabolic signals affecting hypothalamo-pituitary gonadal axis in females and males of different species. Reproduction. 2017;153(6):R215–r26. https://doi.org/10.1530/rep-17-0002.

    Article  CAS  PubMed  Google Scholar 

  25. Ujiie H, Oritani K, Kato H, Yokota T, Takahashi I, Maeda T, et al. Identification of amino-terminal region of adiponectin as a physiologically functional domain. J Cell Biochem. 2006;98(1):194–207. https://doi.org/10.1002/jcb.20779.

    Article  CAS  PubMed  Google Scholar 

  26. Fruebis J, Tsao TS, Javorschi S, Ebbets-Reed D, Erickson MR, Yen FT, et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci U S A. 2001;98(4):2005–10. https://doi.org/10.1073/pnas.041591798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li X, Guo H, Zhao L, Wang B, Liu H, Yue L, et al. Adiponectin attenuates NADPH oxidase-mediated oxidative stress and neuronal damage induced by cerebral ischemia-reperfusion injury. Biochim Biophys Acta Mol basis Dis. 2017;1863(12):3265–76. https://doi.org/10.1016/j.bbadis.2017.08.010.

    Article  CAS  PubMed  Google Scholar 

  28. Lyzogubov VV, Tytarenko RG, Thotakura S, Viswanathan T, Bora NS, Bora PS. Inhibition of new vessel growth in mouse model of laser-induced choroidal neovascularization by adiponectin peptide II. Cell Biol Int. 2009;33(7):765–71. https://doi.org/10.1016/j.cellbi.2009.04.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu B, Ma Q, Khatibi N, Chen W, Sozen T, Cheng O, et al. Ac-YVAD-CMK decreases blood-brain barrier degradation by inhibiting caspase-1 activation of interleukin-1beta in intracerebral hemorrhage mouse model. Transl Stroke Res. 2010;1(1):57–64. https://doi.org/10.1007/s12975-009-0002-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fang Y, Tian Y, Huang Q, Wan Y, Xu L, Wang W, et al. Deficiency of TREK-1 potassium channel exacerbates blood-brain barrier damage and neuroinflammation after intracerebral hemorrhage in mice. J Neuroinflammation. 2019;16(1):96. https://doi.org/10.1186/s12974-019-1485-5.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Liu H, Zhao L, Yue L, Wang B, Li X, Guo H, et al. Pterostilbene attenuates early brain injury following subarachnoid hemorrhage via inhibition of the NLRP3 inflammasome and Nox2-related oxidative stress. Mol Neurobiol. 2017;54(8):5928–40. https://doi.org/10.1007/s12035-016-0108-8.

    Article  CAS  PubMed  Google Scholar 

  32. Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke. 2001;32(4):1005–11. https://doi.org/10.1161/01.str.32.4.1005.

    Article  CAS  PubMed  Google Scholar 

  33. Manaenko A, Chen H, Kammer J, Zhang JH, Tang J. Comparison Evans blue injection routes: intravenous versus intraperitoneal, for measurement of blood-brain barrier in a mice hemorrhage model. J Neurosci Methods. 2011;195(2):206–10. https://doi.org/10.1016/j.jneumeth.2010.12.013.

    Article  PubMed  Google Scholar 

  34. Zhao H, Zhang K, Tang R, Meng H, Zou Y, Wu P, et al. TRPV4 blockade preserves the blood-brain barrier by inhibiting stress fiber formation in a rat model of intracerebral hemorrhage. Front Mol Neurosci. 2018;11:97. https://doi.org/10.3389/fnmol.2018.00097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Feng D, Guo B, Liu G, Wang B, Wang W, Gao G, et al. FGF2 alleviates PTSD symptoms in rats by restoring GLAST function in astrocytes via the JAK/STAT pathway. Eur Neuropsychopharmacol. 2015;25(8):1287–99. https://doi.org/10.1016/j.euroneuro.2015.04.020.

    Article  CAS  PubMed  Google Scholar 

  36. Mortiboys H, Thomas KJ, Koopman WJ, Klaffke S, Abou-Sleiman P, Olpin S, et al. Mitochondrial function and morphology are impaired in parkin-mutant fibroblasts. Ann Neurol. 2008;64(5):555–65. https://doi.org/10.1002/ana.21492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang W, Wang Y, Long J, Wang J, Haudek SB, Overbeek P, et al. Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells. Cell Metab. 2012;15(2):186–200. https://doi.org/10.1016/j.cmet.2012.01.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen Z, Li Y, Wang Y, Qian J, Ma H, Wang X, et al. Cardiomyocyte-restricted low density lipoprotein receptor-related protein 6 (LRP6) deletion leads to lethal dilated cardiomyopathy partly through Drp1 signaling. Theranostics. 2018;8(3):627–43. https://doi.org/10.7150/thno.22177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Taguchi N, Ishihara N, Jofuku A, Oka T, Mihara K. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem. 2007;282(15):11521–9. https://doi.org/10.1074/jbc.M607279200.

    Article  CAS  PubMed  Google Scholar 

  40. Qi X, Disatnik MH, Shen N, Sobel RA, Mochly-Rosen D. Aberrant mitochondrial fission in neurons induced by protein kinase C{delta} under oxidative stress conditions in vivo. Mol Biol Cell. 2011;22(2):256–65. https://doi.org/10.1091/mbc.E10-06-0551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wikstrom JD, Israeli T, Bachar-Wikstrom E, Swisa A, Ariav Y, Waiss M, et al. AMPK regulates ER morphology and function in stressed pancreatic beta-cells via phosphorylation of DRP1. Mol Endocrinol. 2013;27(10):1706–23. https://doi.org/10.1210/me.2013-1109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cereghetti GM, Stangherlin A, Martins de Brito O, Chang CR, Blackstone C, Bernardi P, et al. Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc Natl Acad Sci U S A. 2008;105(41):15803–8. https://doi.org/10.1073/pnas.0808249105.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Desmoulins L, Chretien C, Paccoud R, Collins S, Cruciani-Guglielmacci C, Galinier A, et al. Mitochondrial dynamin-related protein 1 (DRP1) translocation in response to cerebral glucose is impaired in a rat model of early alteration in hypothalamic glucose sensing. Mol Metab. 2019;20:166–77. https://doi.org/10.1016/j.molmet.2018.11.007.

    Article  CAS  PubMed  Google Scholar 

  44. Guillod-Maximin E, Roy AF, Vacher CM, Aubourg A, Bailleux V, Lorsignol A, et al. Adiponectin receptors are expressed in hypothalamus and colocalized with proopiomelanocortin and neuropeptide Y in rodent arcuate neurons. J Endocrinol. 2009;200(1):93–105. https://doi.org/10.1677/joe-08-0348.

    Article  CAS  PubMed  Google Scholar 

  45. Xu M, Wang L, Wang M, Wang H, Zhang H, Chen Y, et al. Mitochondrial ROS and NLRP3 inflammasome in acute ozone-induced murine model of airway inflammation and bronchial hyperresponsiveness. Free Radic Res. 2019;53(7):780–90. https://doi.org/10.1080/10715762.2019.1630735.

    Article  CAS  PubMed  Google Scholar 

  46. Wang X, Jiang W, Yan Y, Gong T, Han J, Tian Z, et al. RNA viruses promote activation of the NLRP3 inflammasome through a RIP1-RIP3-DRP1 signaling pathway. Nat Immunol. 2014;15(12):1126–33. https://doi.org/10.1038/ni.3015.

    Article  CAS  PubMed  Google Scholar 

  47. Kumari S, Anderson L, Farmer S, Mehta SL, Li PA. Hyperglycemia alters mitochondrial fission and fusion proteins in mice subjected to cerebral ischemia and reperfusion. Transl Stroke Res. 2012;3(2):296–304. https://doi.org/10.1007/s12975-012-0158-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ye Xi, Dayun Feng, Kai Tao, Ronglin Wang, Yajun Shi, Huaizhou Qin, Michael P. Murphy, Qian Yang, Gang Zhao, (2018) MitoQ protects dopaminergicneurons in a 6-OHDA induced PD model by enhancing Mfn2-dependent mitochondrial fusion via activation of PGC-1α. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1864 (9):2859-2870

Download references

Funding

This work was supported by grants from the State Key Program of the National Natural Science Foundation of China (81630027, to Dr. Qu), the National Natural Science Foundation of China (81571215, to Dr. Qu), and the Chang Jiang Scholar Program of China (to Dr. Qu).

Author information

Authors and Affiliations

Authors

Contributions

Y. Q. and D-Y. F. carried out this project and designed the study. X. W. performed the animal experiments, J-N. L. and H-X. L. performed the in vitro experiments, and W-X. C. and K. G. carried out statistical analysis and interpreted the data. L. Z. and H. B. helped in drafting the manuscript. H. G. and W. G. revised the manuscript. Thanks to Liang Jialong who help us to stimulate the structure diagram of APNp with Discovery Studio V16.1 software

Corresponding authors

Correspondence to Dayun Feng or Yan Qu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethics Approval

All experimental procedures described here were approved by the Ethics Committee of the Fourth Military Medical University and performed in accordance with the guidelines of the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Luo, J., Liu, H. et al. Recombinant Adiponectin Peptide Ameliorates Brain Injury Following Intracerebral Hemorrhage by Suppressing Astrocyte-Derived Inflammation via the Inhibition of Drp1-Mediated Mitochondrial Fission. Transl. Stroke Res. 11, 924–939 (2020). https://doi.org/10.1007/s12975-019-00768-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-019-00768-x

Keywords

Navigation