Skip to main content
Log in

Rehabilitation and the Neural Network After Stroke

  • Review
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Stroke remains a major cause of disability throughout the world: paralysis, cognitive impairment, aphasia, and so on. Surgical or medical intervention is curative in only a small number of cases. Nearly all stroke cases require rehabilitation. Neurorehabilitation generally improves patient outcome, but it sometimes has no effect or even a mal-influence. The aim of this review is the clarification of the mechanisms of neurorehabilitation. We systematically reviewed recently published articles on neural network remodeling, especially from 2014 to 2016. Finally, we summarize progress in neurorehabilitation and discuss future prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Survey of patient. In: Minister of Health Labour and Welfare, editor. Tokyo, Japan; 2016.

  2. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–322.

    Article  PubMed  Google Scholar 

  3. Brinjikji W, Lanzino G, Rabinstein AA, Kallmes DF, Cloft HJ. Age-related trends in the treatment and outcomes of ruptured cerebral aneurysms: a study of the nationwide inpatient sample 2001-2009. AJNR Am J Neuroradiol. 2013;34(5):1022–7.

    Article  CAS  PubMed  Google Scholar 

  4. Nieuwkamp DJ, Algra A, Blomqvist P, Adami J, Buskens E, Koffijberg H, et al. Excess mortality and cardiovascular events in patients surviving subarachnoid hemorrhage: a nationwide study in Sweden. Stroke. 2011;42(4):902–7.

    Article  PubMed  Google Scholar 

  5. Nieuwkamp DJ, Setz LE, Algra A, Linn FH, de Rooij NK, Rinkel GJ. Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: a meta-analysis. Lancet Neurol. 2009;8(7):635–42.

    Article  PubMed  Google Scholar 

  6. Forti P, Maioli F, Procaccianti G, Nativio V, Lega MV, Coveri M, et al. Independent predictors of ischemic stroke in the elderly: prospective data from a stroke unit. Neurology. 2013;80(1):29–38.

    Article  PubMed  Google Scholar 

  7. Kammersgaard LP, Jorgensen HS, Reith J, Nakayama H, Pedersen PM, Olsen TS, et al. Short- and long-term prognosis for very old stroke patients. The Copenhagen Stroke Study. Age Ageing. 2004;33(2):149–54.

    Article  PubMed  Google Scholar 

  8. Nakayama H, Jorgensen HS, Raaschou HO, Olsen TS. The influence of age on stroke outcome. The Copenhagen Stroke Study. Stroke. 1994;25(4):808–13.

    Article  CAS  PubMed  Google Scholar 

  9. Koh SH, Park HH. Neurogenesis in stroke recovery. Transl Stroke Res. 2017;8(1):3–13.

    Article  CAS  PubMed  Google Scholar 

  10. Knecht S, Rossmuller J, Unrath M, Stephan KM, Berger K, Studer B. Old benefit as much as young patients with stroke from high-intensity neurorehabilitation: cohort analysis. J Neurol Neurosurg Psychiatry. 2016;87(5):526–30.

    Article  PubMed  Google Scholar 

  11. Shimamura N, Matsuda N, Satou J, Nakano T, Ohkuma H. Early ambulation produces favorable outcome and nondemential state in aneurysmal subarachnoid hemorrhage patients older than 70 years of age. World Neurosurg. 2014;81(2):330–4.

    Article  PubMed  Google Scholar 

  12. Shimamura N, Naraoka M, Katagai T, Katayama K, Kakuta K, Matsuda N, et al. Analysis of factors that influence long-term independent living for elderly subarachnoid hemorrhage patients. World Neurosurg. 2016;90:504–10.

    Article  PubMed  Google Scholar 

  13. Ren H, Liu C, Li J, Yang R, Ma F, Zhang M, et al. Self-perceived burden in the young and middle-aged inpatients with stroke: a cross-sectional survey. Rehabil Nurs. 2016;41(2):101–11.

    Article  PubMed  Google Scholar 

  14. Alhadidi Q, Bin Sayeed MS, Shah ZA. Cofilin as a promising therapeutic target for ischemic and hemorrhagic stroke. Transl Stroke Res. 2016;7(1):33–41.

    Article  CAS  PubMed  Google Scholar 

  15. Chen D, Yu SP, Wei L. Ion channels in regulation of neuronal regenerative activities. Transl Stroke Res. 2014;5(1):156–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dotson AL, Chen Y, Zhu W, Libal N, Alkayed NJ, Offner H. Partial MHC constructs treat thromboembolic ischemic stroke characterized by early immune expansion. Transl Stroke Res. 2016;7(1):70–8.

    Article  CAS  PubMed  Google Scholar 

  17. Li Z, Wang J, Zhao C, Ren K, Xia Z, Yu H, et al. Acute blockage of notch signaling by DAPT induces neuroprotection and neurogenesis in the neonatal rat brain after stroke. Transl Stroke Res. 2016;7(2):132–40.

    Article  CAS  PubMed  Google Scholar 

  18. Sakamoto M, Miyazaki Y, Kitajo K, Yamaguchi A. VGF, which is induced transcriptionally in stroke brain, enhances neurite extension and confers protection against ischemia in vitro. Transl Stroke Res. 2015;6(4):301–8.

    Article  CAS  PubMed  Google Scholar 

  19. Wan S, Cheng Y, Jin H, Guo D, Hua Y, Keep RF, et al. Microglia activation and polarization after intracerebral hemorrhage in mice: the role of protease-activated receptor-1. Transl Stroke Res. 2016;7(6):478–87.

    Article  CAS  PubMed  Google Scholar 

  20. Cassidy JM, Cramer SC. Spontaneous and therapeutic-induced mechanisms of functional recovery after stroke. Transl Stroke Res. 2017;8(1):33–46.

    Article  CAS  PubMed  Google Scholar 

  21. Egawa N, Lok J, Washida K, Arai K. Mechanisms of axonal damage and repair after central nervous system injury. Transl Stroke Res. 2017;8(1):14–21.

    Article  CAS  PubMed  Google Scholar 

  22. Kwakkel G, Kollen BJ, van der Grond J, Prevo AJ. Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke. 2003;34(9):2181–6.

    Article  PubMed  Google Scholar 

  23. Jauch EC, Saver JL, Adams HP Jr, Bruno A, Connors JJ, Demaerschalk BM, et al. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013;44(3):870–947.

    Article  PubMed  Google Scholar 

  24. group ATC, Bernhardt J, Langhorne P, Lindley RI, Thrift AG, Ellery F, et al. Efficacy and safety of very early mobilisation within 24 h of stroke onset (AVERT): a randomised controlled trial. Lancet. 2015;386(9988):46–55.

    Article  Google Scholar 

  25. Dromerick AW, Lang CE, Birkenmeier RL, Wagner JM, Miller JP, Videen TO, et al. Very Early Constraint-Induced Movement during Stroke Rehabilitation (VECTORS): a single-center RCT. Neurology. 2009;73(3):195–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dignam J, Copland D, McKinnon E, Burfein P, O’Brien K, Farrell A, et al. Intensive versus distributed aphasia therapy: a nonrandomized, parallel-group, dosage-controlled study. Stroke. 2015;46(8):2206–11.

    Article  PubMed  Google Scholar 

  27. Winstein CJ, Stein J, Arena R, Bates B, Cherney LR, Cramer SC, et al. Guidelines for adult stroke rehabilitation and recovery: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2016;47(6):e98–e169.

    Article  PubMed  Google Scholar 

  28. Shimamura N, Munakata A, Ohkuma H. Current management of subarachnoid hemorrhage in advanced age. Acta Neurochir Suppl. 2011;110(Pt 2):151–5.

    PubMed  Google Scholar 

  29. Tolea MI, Galvin JE. Sarcopenia and impairment in cognitive and physical performance. Clin Interv Aging. 2015;10:663–71.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hairi NN, Cumming RG, Naganathan V, Handelsman DJ, Le Couteur DG, Creasey H, et al. Loss of muscle strength, mass (sarcopenia), and quality (specific force) and its relationship with functional limitation and physical disability: the Concord Health and Ageing in Men Project. J Am Geriatr Soc. 2010;58(11):2055–62.

    Article  PubMed  Google Scholar 

  31. Nourhashemi F, Andrieu S, Gillette-Guyonnet S, Reynish E, Albarede JL, Grandjean H, et al. Is there a relationship between fat-free soft tissue mass and low cognitive function? Results from a study of 7,105 women. J Am Geriatr Soc. 2002;50(11):1796–801.

    Article  PubMed  Google Scholar 

  32. Shin HY, Kim SW, Kim JM, Shin IS, Yoon JS. Association of grip strength with dementia in a Korean older population. Int J Geriatr Psychiatry. 2012;27(5):500–5.

    Article  PubMed  Google Scholar 

  33. Sternang O, Reynolds CA, Finkel D, Ernsth-Bravell M, Pedersen NL, Dahl Aslan AK. Factors associated with grip strength decline in older adults. Age Ageing. 2015;44(2):269–74.

    Article  PubMed  Google Scholar 

  34. Calvani R, Marini F, Cesari M, Tosato M, Anker SD, von Haehling S, et al. Biomarkers for physical frailty and sarcopenia: state of the science and future developments. J Cachex Sarcopenia Muscle. 2015;6(4):278–86.

    Article  Google Scholar 

  35. Sawaki L, Butler AJ, Leng X, Wassenaar PA, Mohammad YM, Blanton S, et al. Differential patterns of cortical reorganization following constraint-induced movement therapy during early and late period after stroke: a preliminary study. NeuroRehabilitation. 2014;35(3):415–26.

    PubMed  PubMed Central  Google Scholar 

  36. Karsenty G, Olson EN. Bone and muscle endocrine functions: unexpected paradigms of inter-organ communication. Cell. 2016;164(6):1248–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol. 2012;8(8):457–65.

    Article  CAS  PubMed  Google Scholar 

  38. Pedersen BK. Exercise-induced myokines and their role in chronic diseases. Brain Behav Immun. 2011;25(5):811–6.

    Article  CAS  PubMed  Google Scholar 

  39. Pedersen BK, Pedersen M, Krabbe KS, Bruunsgaard H, Matthews VB, Febbraio MA. Role of exercise-induced brain-derived neurotrophic factor production in the regulation of energy homeostasis in mammals. Exp Physiol. 2009;94(12):1153–60.

    Article  CAS  PubMed  Google Scholar 

  40. Fujimura H, Altar CA, Chen R, Nakamura T, Nakahashi T, Kambayashi J, et al. Brain-derived neurotrophic factor is stored in human platelets and released by agonist stimulation. Thromb Haemost. 2002;87(4):728–34.

    CAS  PubMed  Google Scholar 

  41. Dinoff A, Herrmann N, Swardfager W, Liu CS, Sherman C, Chan S, et al. The effect of exercise training on resting concentrations of peripheral brain-derived neurotrophic factor (BDNF): a meta-analysis. PLoS One. 2016;11(9):e0163037.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Matthews VB, Astrom MB, Chan MH, Bruce CR, Krabbe KS, Prelovsek O, et al. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia. 2009;52(7):1409–18.

    Article  CAS  PubMed  Google Scholar 

  43. Stranahan AM, Lee K, Martin B, Maudsley S, Golden E, Cutler RG, et al. Voluntary exercise and caloric restriction enhance hippocampal dendritic spine density and BDNF levels in diabetic mice. Hippocampus. 2009;19(10):951–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Horch HW, Kruttgen A, Portbury SD, Katz LC. Destabilization of cortical dendrites and spines by BDNF. Neuron. 1999;23(2):353–64.

    Article  CAS  PubMed  Google Scholar 

  45. Gleichgerrcht E, Fridriksson J, Rorden C, Nesland T, Desai R, Bonilha L. Separate neural systems support representations for actions and objects during narrative speech in post-stroke aphasia. Neuroimage Clin. 2016;10:140–5.

    Article  PubMed  Google Scholar 

  46. Kiran S, Meier EL, Kapse KJ, Glynn PA. Changes in task-based effective connectivity in language networks following rehabilitation in post-stroke patients with aphasia. Front Hum Neurosci. 2015;9:316.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ripolles P, Rojo N, Grau-Sanchez J, Amengual JL, Camara E, Marco-Pallares J, et al. Music supported therapy promotes motor plasticity in individuals with chronic stroke. Brain Imaging Behav. 2015;10:1289–307.

    Article  Google Scholar 

  48. Sarkamo T, Ripolles P, Vepsalainen H, Autti T, Silvennoinen HM, Salli E, et al. Structural changes induced by daily music listening in the recovering brain after middle cerebral artery stroke: a voxel-based morphometry study. Front Hum Neurosci. 2014;8:245.

    PubMed  PubMed Central  Google Scholar 

  49. Lefebvre S, Dricot L, Laloux P, Gradkowski W, Desfontaines P, Evrard F, et al. Neural substrates underlying stimulation-enhanced motor skill learning after stroke. Brain. 2015;138(Pt 1):149–63.

    Article  PubMed  Google Scholar 

  50. Yang W, Liu TT, Song XB, Zhang Y, Li ZH, Cui ZH, et al. Comparison of different stimulation parameters of repetitive transcranial magnetic stimulation for unilateral spatial neglect in stroke patients. J Neurol Sci. 2015;359(1–2):219–25.

    Article  PubMed  Google Scholar 

  51. Kakuda W, Abo M, Sasanuma J, Shimizu M, Okamoto T, Kimura C, et al. Combination protocol of low-frequency rTMS and intensive occupational therapy for post-stroke upper limb hemiparesis: a 6-year experience of more than 1700 Japanese patients. Transl Stroke Res. 2016;7(3):172–9.

    Article  PubMed  Google Scholar 

  52. Hara T, Abo M, Kobayashi K, Watanabe M, Kakuda W, Senoo A. Effects of low-frequency repetitive transcranial magnetic stimulation combined with intensive speech therapy on cerebral blood flow in post-stroke aphasia. Transl Stroke Res. 2015;6(5):365–74.

    Article  PubMed  Google Scholar 

  53. Nishibe M, Urban ET 3rd, Barbay S, Nudo RJ. Rehabilitative training promotes rapid motor recovery but delayed motor map reorganization in a rat cortical ischemic infarct model. Neurorehabil Neural Repair. 2015;29(5):472–82.

    Article  PubMed  Google Scholar 

  54. Xu T, Yu X, Perlik AJ, Tobin WF, Zweig JA, Tennant K, et al. Rapid formation and selective stabilization of synapses for enduring motor memories. Nature. 2009;462(7275):915–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang G, Pan F, Gan WB. Stably maintained dendritic spines are associated with lifelong memories. Nature. 2009;462(7275):920–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR, Welker E, et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature. 2002;420(6917):788–94.

    Article  CAS  PubMed  Google Scholar 

  57. Wang L, Conner JM, Rickert J, Tuszynski MH. Structural plasticity within highly specific neuronal populations identifies a unique parcellation of motor learning in the adult brain. Proc Natl Acad Sci U S A. 2011;108(6):2545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang L, Conner JM, Nagahara AH, Tuszynski MH. Rehabilitation drives enhancement of neuronal structure in functionally relevant neuronal subsets. Proc Natl Acad Sci U S A. 2016;113(10):2750–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gulati T, Won SJ, Ramanathan DS, Wong CC, Bodepudi A, Swanson RA, et al. Robust neuroprosthetic control from the stroke perilesional cortex. J Neurosci. 2015;35(22):8653–61.

    Article  CAS  PubMed  Google Scholar 

  60. Jones TA, Schallert T. Overgrowth and pruning of dendrites in adult rats recovering from neocortical damage. Brain Res. 1992;581(1):156–60.

    Article  CAS  PubMed  Google Scholar 

  61. Jones TA, Schallert T. Use-dependent growth of pyramidal neurons after neocortical damage. J Neurosci. 1994;14(4):2140–52.

    CAS  PubMed  Google Scholar 

  62. Jones TA, Kleim JA, Greenough WT. Synaptogenesis and dendritic growth in the cortex opposite unilateral sensorimotor cortex damage in adult rats: a quantitative electron microscopic examination. Brain Res. 1996;733(1):142–8.

    Article  CAS  PubMed  Google Scholar 

  63. Kozlowski DA, James DC, Schallert T. Use-dependent exaggeration of neuronal injury after unilateral sensorimotor cortex lesions. J Neurosci. 1996;16(15):4776–86.

    CAS  PubMed  Google Scholar 

  64. Biernaskie J, Chernenko G, Corbett D. Efficacy of rehabilitative experience declines with time after focal ischemic brain injury. J Neurosci. 2004;24(5):1245–54.

    Article  CAS  PubMed  Google Scholar 

  65. Biernaskie J, Corbett D. Enriched rehabilitative training promotes improved forelimb motor function and enhanced dendritic growth after focal ischemic injury. J Neurosci. 2001;21(14):5272–80.

    CAS  PubMed  Google Scholar 

  66. Okabe N, Shiromoto T, Himi N, Lu F, Maruyama-Nakamura E, Narita K, et al. Neural network remodeling underlying motor map reorganization induced by rehabilitative training after ischemic stroke. Neuroscience. 2016;339:338–62.

    Article  CAS  PubMed  Google Scholar 

  67. Shiromoto T, Okabe N, Lu F, Maruyama-Nakamura E, Himi N, Narita K, et al. The role of endogenous neurogenesis in functional recovery and motor map reorganization induced by rehabilitative therapy after stroke in rats. J Stroke Cerebrovasc Dis. 2016;26:260–72.

    Article  PubMed  Google Scholar 

  68. Herbert WJ, Powell K, Buford JA. Evidence for a role of the reticulospinal system in recovery of skilled reaching after cortical stroke: initial results from a model of ischemic cortical injury. Exp Brain Res. 2015;233(11):3231–51.

    Article  CAS  PubMed  Google Scholar 

  69. Baydin S, Gungor A, Tanriover N, Baran O, Middlebrooks EH, Rhoton AL Jr. Fiber tracts of the medial and inferior surfaces of the cerebrum. World Neurosurg. 2016;98:34–49.

    Article  PubMed  Google Scholar 

  70. Fernandez-Miranda JC, Rhoton AL Jr, Alvarez-Linera J, Kakizawa Y, Choi C, de Oliveira EP. Three-dimensional microsurgical and tractographic anatomy of the white matter of the human brain. Neurosurgery. 2008;62(6 Suppl 3):989–1026. discussion -8

    PubMed  Google Scholar 

  71. Kucukyuruk B, Yagmurlu K, Tanriover N, Uzan M, Rhoton AL Jr. Microsurgical anatomy of the white matter tracts in hemispherotomy. Neurosurgery. 2014;10(Suppl 2):305–24. discussion 24

    Article  PubMed  Google Scholar 

  72. Rubino PA, Rhoton AL Jr, Tong X, Oliveira E. Three-dimensional relationships of the optic radiation. Neurosurgery. 2005;57(4 Suppl):219–27. discussion -27

    PubMed  Google Scholar 

  73. Kraft E, Schaal MC, Lule D, Konig E, Scheidtmann K. The functional anatomy of motor imagery after sub-acute stroke. NeuroRehabilitation. 2015;36(3):329–37.

    Article  PubMed  Google Scholar 

  74. Catani M, ffytche DH. The rises and falls of disconnection syndromes. Brain. 2005;128(Pt 10):2224–39.

    Article  PubMed  Google Scholar 

  75. Catani M, Howard RJ, Pajevic S, Jones DK. Virtual in vivo interactive dissection of white matter fasciculi in the human brain. NeuroImage. 2002;17(1):77–94.

    Article  PubMed  Google Scholar 

  76. Lee MH, Shin YI, Lee SH, Cha YJ, Kim DY, Han BS, et al. Diffusion tensor imaging to determine the potential motor network connectivity between the involved and non-involved hemispheres in stroke. Biomed Mater Eng. 2015;26(Suppl 1):S1447–53.

    PubMed  Google Scholar 

  77. Feng W, Wang J, Chhatbar PY, Doughty C, Landsittel D, Lioutas VA, et al. Corticospinal tract lesion load: an imaging biomarker for stroke motor outcomes. Ann Neurol. 2015;78(6):860–70.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Stinear CM, Barber PA, Smale PR, Coxon JP, Fleming MK, Byblow WD. Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain. 2007;130(Pt 1):170–80.

    PubMed  Google Scholar 

  79. Young BM, Stamm JM, Song J, Remsik AB, Nair VA, Tyler ME, et al. Brain-computer interface training after stroke affects patterns of brain-behavior relationships in corticospinal motor fibers. Front Hum Neurosci. 2016;10:457.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Stewart JC, Dewanjee P, Shariff U, Cramer SC. Dorsal premotor activity and connectivity relate to action selection performance after stroke. Hum Brain Mapp. 2016;37(5):1816–30.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Fang Y, Han Z, Zhong S, Gong G, Song L, Liu F, et al. The semantic anatomical network: evidence from healthy and brain-damaged patient populations. Hum Brain Mapp. 2015;36(9):3499–515.

    Article  PubMed  Google Scholar 

  82. Borstad AL, Choi S, Schmalbrock P, Nichols-Larsen DS. Frontoparietal white matter integrity predicts haptic performance in chronic stroke. Neuroimage Clin. 2016;10:129–39.

    Article  PubMed  Google Scholar 

  83. Liu S, Guo J, Meng J, Wang Z, Yao Y, Yang J, et al. Abnormal EEG complexity and functional connectivity of brain in patients with acute thalamic ischemic stroke. Comput Math Methods Med. 2016;2016:2582478.

    PubMed  PubMed Central  Google Scholar 

  84. Lake EM, Chaudhuri J, Thomason L, Janik R, Ganguly M, Brown M, et al. The effects of delayed reduction of tonic inhibition on ischemic lesion and sensorimotor function. J Cereb Blood Flow Metab. 2015;35(10):1601–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hays SA, Ruiz A, Bethea T, Khodaparast N, Carmel JB, Rennaker RL 2nd, et al. Vagus nerve stimulation during rehabilitative training enhances recovery of forelimb function after ischemic stroke in aged rats. Neurobiol Aging. 2016;43:111–8.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Follesa P, Biggio F, Gorini G, Caria S, Talani G, Dazzi L, et al. Vagus nerve stimulation increases norepinephrine concentration and the gene expression of BDNF and bFGF in the rat brain. Brain Res. 2007;1179:28–34.

    Article  CAS  PubMed  Google Scholar 

  87. Furmaga H, Carreno FR, Frazer A. Vagal nerve stimulation rapidly activates brain-derived neurotrophic factor receptor TrkB in rat brain. PLoS One. 2012;7(5):e34844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen J, Tang YX, Liu YM, Chen J, Hu XQ, Liu N, et al. Transplantation of adipose-derived stem cells is associated with neural differentiation and functional improvement in a rat model of intracerebral hemorrhage. CNS Neurosci Ther. 2012;18(10):847–54.

    Article  PubMed  Google Scholar 

  89. Honmou O, Houkin K, Matsunaga T, Niitsu Y, Ishiai S, Onodera R, et al. Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain. 2011;134(Pt 6):1790–807.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Liang H, Yin Y, Lin T, Guan D, Ma B, Li C, et al. Transplantation of bone marrow stromal cells enhances nerve regeneration of the corticospinal tract and improves recovery of neurological functions in a collagenase-induced rat model of intracerebral hemorrhage. Mol Cell. 2013;36(1):17–24.

    Article  CAS  Google Scholar 

  91. Parr AM, Tator CH, Keating A. Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplant. 2007;40(7):609–19.

    Article  CAS  PubMed  Google Scholar 

  92. Qin J, Gong G, Sun S, Qi J, Zhang H, Wang Y, et al. Functional recovery after transplantation of induced pluripotent stem cells in a rat hemorrhagic stroke model. Neurosci Lett. 2013;554(0):70–5.

    Article  CAS  PubMed  Google Scholar 

  93. Qin J, Song B, Zhang H, Wang Y, Wang N, Ji Y, et al. Transplantation of human neuro-epithelial-like stem cells derived from induced pluripotent stem cells improves neurological function in rats with experimental intracerebral hemorrhage. Neurosci Lett. 2013;548(0):95–100.

    Article  CAS  PubMed  Google Scholar 

  94. Yamauchi T, Kuroda Y, Morita T, Shichinohe H, Houkin K, Dezawa M, et al. Therapeutic effects of human multilineage-differentiating stress enduring (MUSE) cell transplantation into infarct brain of mice. PLoS One. 2015;10(3):e0116009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Avaliani N, Sorensen AT, Ledri M, Bengzon J, Koch P, Brustle O, et al. Optogenetics reveal delayed afferent synaptogenesis on grafted human-induced pluripotent stem cell-derived neural progenitors. Stem Cells. 2014;32(12):3088–98.

    Article  CAS  PubMed  Google Scholar 

  96. Ito M, Kuroda S, Sugiyama T, Shichinohe H, Takeda Y, Nishio M, et al. Validity of bone marrow stromal cell expansion by animal serum-free medium for cell transplantation therapy of cerebral infarct in rats-a serial MRI study. Transl Stroke Res. 2011;2(3):294–306.

    Article  PubMed  Google Scholar 

  97. Lim TC, Spector M. Biomaterials for enhancing CNS repair. Transl Stroke Res. 2017;8(1):57–64.

    Article  CAS  PubMed  Google Scholar 

  98. Pendharkar AV, Chua JY, Andres RH, Wang N, Gaeta X, Wang H, et al. Biodistribution of neural stem cells after intravascular therapy for hypoxic-ischemia. Stroke. 2010;41(9):2064–70.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Rodriguez-Frutos B, Otero-Ortega L, Gutierrez-Fernandez M, Fuentes B, Ramos-Cejudo J, Diez-Tejedor E. Stem cell therapy and administration routes after stroke. Transl Stroke Res. 2016;7(5):378–87.

    Article  CAS  PubMed  Google Scholar 

  100. Ziv O, Zaritsky A, Yaffe Y, Mutukula N, Edri R, Elkabetz Y. Quantitative live imaging of human embryonic stem cell derived neural rosettes reveals structure-function dynamics coupled to cortical development. PLoS Comput Biol. 2015;11(10):e1004453.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Bell JA, Wolke ML, Ortez RC, Jones TA, Kerr AL. Training intensity affects motor rehabilitation efficacy following unilateral ischemic insult of the sensorimotor cortex in C57BL/6 mice. Neurorehabil Neural Repair. 2015;29(6):590–8.

    Article  PubMed  Google Scholar 

  102. Kokaia Z, Darsalia V. Neural stem cell-based therapy for ischemic stroke. Transl Stroke Res. 2011;2(3):272–8.

    Article  PubMed  Google Scholar 

  103. Pena I, Borlongan CV. Translating G-CSF as an adjunct therapy to stem cell transplantation for stroke. Transl Stroke Res. 2015;6(6):421–9.

    Article  PubMed  CAS  Google Scholar 

  104. Uchida H, Morita T, Niizuma K, Kushida Y, Kuroda Y, Wakao S, et al. Transplantation of unique subpopulation of fibroblasts, muse cells, ameliorates experimental stroke possibly via robust neuronal differentiation. Stem Cells. 2015;34:160–73.

    Article  PubMed  CAS  Google Scholar 

  105. Shimamura N, Kakuta K, Wang L, Naraoka M, Uchida H, Wakao S, et al. Neuro-regeneration therapy using human Muse cells is highly effective in a mouse intracerebral hemorrhage model. Exp Brain Res. 2016;235:565–72.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mark Inglin (University of Basel) for his editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norihito Shimamura.

Ethics declarations

This work was supported by Grants-in-Aid for Scientific Research of Japan, grant number 26462149 for Norihito Shimamura. This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimamura, N., Katagai, T., Kakuta, K. et al. Rehabilitation and the Neural Network After Stroke. Transl. Stroke Res. 8, 507–514 (2017). https://doi.org/10.1007/s12975-017-0550-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-017-0550-6

Keywords

Navigation