Skip to main content

Advertisement

Log in

Fission and Fusion of the Neuronal Endoplasmic Reticulum

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

The endoplasmic reticulum (ER) is central for protein synthesis and is the largest intracellular Ca2+ store in neurons. The neuronal ER is classically described to have a continuous lumen spanning all cellular compartments. This allows neuronal ER to integrate spatially separate events in the cell. Recent in vitro as well as in vivo findings, however, demonstrate that the neuronal ER is a structurally dynamic entity, capable of rapid fragmentation, i.e., ER fission. The ER fragments can fuse back together and reinstate ER continuity. This reversible phenomenon can be induced repeatedly within the same cell, is temperature-dependent, and compatible with cell survival. The key trigger for dendritic ER fission is N-methyl D-aspartate (NMDA) receptor stimulation in the presence of extracellular Ca2+. However, the exact molecular machinery responsible for the fission and fusion of neuronal ER remains unknown. Reversible ER fission represents a new cell biological event downstream of NMDA receptor-gated Ca2+ influx and may thus influence many aspects of neuronal function in physiology and disease. Hence, it constitutes a new field for exploration in neuroscience that will benefit greatly from recent advances in light microscopy imaging techniques allowing dynamic characterization of cellular events in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Strong AJ, Fabricius M, Boutelle MG, Hibbins SJ, Hopwood SE, Jones R, et al. Spreading and synchronous depressions of cortical activity in acutely injured human brain. Stroke; a j cereb circ. 2002;33(12):2738–43.

    Article  Google Scholar 

  2. Chapman AG. Glutamate receptors in epilepsy. Prog Brain Res. 1998;116:371–83.

    Article  PubMed  CAS  Google Scholar 

  3. Lauritzen M, Dreier JP, Fabricius M, Hartings JA, Graf R, Strong AJ. Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury. J cereb blood flow metab : off j Int Soc Cereb Blood Flow Metab. 2011;31(1):17–35. doi:10.1038/jcbfm.2010.191.

    Article  Google Scholar 

  4. Mattson MP. Calcium and neurodegeneration. Aging Cell. 2007;6(3):337–50. doi:10.1111/j.1474-9726.2007.00275.x.

    Article  PubMed  CAS  Google Scholar 

  5. Cali T, Ottolini D, Brini M. Mitochondrial Ca(2+) and neurodegeneration. Cell Calcium. 2012;52(1):73–85. doi:10.1016/j.ceca.2012.04.015.

    Article  PubMed  CAS  Google Scholar 

  6. Verkhratsky A. Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol Rev. 2005;85(1):201–79. doi:10.1152/physrev.00004.2004.

    Article  PubMed  CAS  Google Scholar 

  7. Doyle KM, Kennedy D, Gorman AM, Gupta S, Healy SJ, Samali A. Unfolded proteins and endoplasmic reticulum stress in neurodegenerative disorders. J cell mol med. 2011;15(10):2025–39. doi:10.1111/j.1582-4934.2011.01374.x.

    Article  PubMed  CAS  Google Scholar 

  8. Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest. 2005;115(10):2656–64. doi:10.1172/JCI26373.

    Article  PubMed  CAS  Google Scholar 

  9. Paschen W, Mengesdorf T. Endoplasmic reticulum stress response and neurodegeneration. Cell Calcium. 2005;38(3–4):409–15. doi:10.1016/j.ceca.2005.06.019.

    Article  PubMed  CAS  Google Scholar 

  10. DeGracia DJ, Montie HL. Cerebral ischemia and the unfolded protein response. Journal of Neurochemistry. 2004;91(1):1–8. doi:10.1111/j.1471-4159.2004.02703.x.

    Article  PubMed  CAS  Google Scholar 

  11. Baumann O, Walz B. Endoplasmic reticulum of animal cells and its organization into structural and functional domains. Int Rev Cytol. 2001;205:149–214.

    Article  PubMed  CAS  Google Scholar 

  12. Martone ME, Zhang Y, Simpliciano VM, Carragher BO, Ellisman MH. Three-dimensional visualization of the smooth endoplasmic reticulum in Purkinje cell dendrites. J Neurosci. 1993;13(11):4636–46.

    PubMed  CAS  Google Scholar 

  13. Spacek J, Harris KM. Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat. J Neurosci. 1997;17(1):190–203.

    PubMed  CAS  Google Scholar 

  14. Cooney JR, Hurlburt JL, Selig DK, Harris KM, Fiala JC. Endosomal compartments serve multiple hippocampal dendritic spines from a widespread rather than a local store of recycling membrane. J Neurosci. 2002;22(6):2215–24.

    PubMed  CAS  Google Scholar 

  15. Droz B, Rambourg A, Koenig HL. The smooth endoplasmic reticulum: structure and role in the renewal of axonal membrane and synaptic vesicles by fast axonal transport. Brain Res. 1975;93(1):1–13.

    Article  PubMed  CAS  Google Scholar 

  16. Tsukita S, Ishikawa H. Three-dimensional distribution of smooth endoplasmic reticulum in myelinated axons. J Electron Microsc (Tokyo). 1976;25(3):141–9.

    CAS  Google Scholar 

  17. Waterman-Storer CM, Salmon ED. Endoplasmic reticulum membrane tubules are distributed by microtubules in living cells using three distinct mechanisms. Curr Biol. 1998;8(14):798–806.

    Article  PubMed  CAS  Google Scholar 

  18. Du Y, Ferro-Novick S, Novick P. Dynamics and inheritance of the endoplasmic reticulum. J Cell Sci. 2004;117(Pt 14):2871–8. doi:10.1242/jcs.01286117/14/2871.

    Article  PubMed  CAS  Google Scholar 

  19. Park SH, Blackstone C. Further assembly required: construction and dynamics of the endoplasmic reticulum network. EMBO Rep. 2010;11(7):515–21. doi:10.1038/embor.2010.92.

    Article  PubMed  CAS  Google Scholar 

  20. Renvoise B, Blackstone C. Emerging themes of ER organization in the development and maintenance of axons. Curr Opin Neurobiol. 2010;20(5):531–7. doi:10.1016/j.conb.2010.07.001.

    Article  PubMed  CAS  Google Scholar 

  21. Berridge MJ. Neuronal calcium signaling. Neuron. 1998;21(1):13–26.

    Article  PubMed  CAS  Google Scholar 

  22. Petersen OH, Verkhratsky A. Endoplasmic reticulum calcium tunnels integrate signalling in polarised cells. Cell Calcium. 2007;42(4–5):373–8. doi:10.1016/j.ceca.2007.05.012.

    Article  PubMed  CAS  Google Scholar 

  23. Lee MC, Miller EA, Goldberg J, Orci L, Schekman R. Bi-directional protein transport between the ER and Golgi. Annu Rev Cell Dev Biol. 2004;20:87–123. doi:10.1146/annurev.cellbio.20.010403.105307.

    Article  PubMed  CAS  Google Scholar 

  24. Brostrom MA, Brostrom CO. Calcium dynamics and endoplasmic reticular function in the regulation of protein synthesis: implications for cell growth and adaptability. Cell Calcium. 2003;34(4–5):345–63.

    Article  PubMed  CAS  Google Scholar 

  25. Michalak M, Robert Parker JM, Opas M. Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum. Cell Calcium. 2002;32(5–6):269–78.

    Article  PubMed  CAS  Google Scholar 

  26. Verkhratsky A. Endoplasmic reticulum calcium signaling in nerve cells. Biol Res. 2004;37(4):693–9.

    Article  PubMed  Google Scholar 

  27. Terasaki M, Slater NT, Fein A, Schmidek A, Reese TS. Continuous network of endoplasmic reticulum in cerebellar Purkinje neurons. Proc Natl Acad Sci U S A. 1994;91(16):7510–4.

    Article  PubMed  CAS  Google Scholar 

  28. Jones VC, McKeown L, Verkhratsky A, Jones OT. LV-pIN-KDEL: a novel lentiviral vector demonstrates the morphology, dynamics and continuity of the endoplasmic reticulum in live neurones. BMC Neurosci. 2008;9:10. doi:10.1186/1471-2202-9-10.

    Article  PubMed  Google Scholar 

  29. Jones VC, Rodriguez JJ, Verkhratsky A, Jones OT. A lentivirally delivered photoactivatable GFP to assess continuity in the endoplasmic reticulum of neurones and glia. Pflugers Arch. 2009;458(4):809–18. doi:10.1007/s00424-009-0663-1.

    Article  PubMed  CAS  Google Scholar 

  30. Ramirez OA, Couve A. The endoplasmic reticulum and protein trafficking in dendrites and axons. Trends Cell Biol. 2011;21(4):219–27. doi:10.1016/j.tcb.2010.12.003.

    Article  PubMed  CAS  Google Scholar 

  31. Cui-Wang T, Hanus C, Cui T, Helton T, Bourne J, Watson D, et al. Local zones of endoplasmic reticulum complexity confine cargo in neuronal dendrites. Cell. 2012;148(1–2):309–21. doi:10.1016/j.cell.2011.11.056.

    Article  PubMed  CAS  Google Scholar 

  32. Choi YM, Kim SH, Chung S, Uhm DY, Park MK. Regional interaction of endoplasmic reticulum Ca2+ signals between soma and dendrites through rapid luminal Ca2+ diffusion. J Neurosci. 2006;26(47):12127–36. doi:10.1523/JNEUROSCI.3158-06.2006.

    Article  PubMed  CAS  Google Scholar 

  33. Verkhratsky A, Petersen OH. The endoplasmic reticulum as an integrating signalling organelle: from neuronal signalling to neuronal death. Eur J Pharmacol. 2002;447(2–3):141–54.

    Article  PubMed  CAS  Google Scholar 

  34. Meldolesi J. Rapidly exchanging Ca2+ stores in neurons: molecular, structural and functional properties. Prog Neurobiol. 2001;65(3):309–38.

    Article  PubMed  CAS  Google Scholar 

  35. Carrasco MA, Jaimovich E, Kemmerling U, Hidalgo C. Signal transduction and gene expression regulated by calcium release from internal stores in excitable cells. Biol Res. 2004;37(4):701–12.

    Article  PubMed  Google Scholar 

  36. Terasaki M, Jaffe LA. Organization of the sea urchin egg endoplasmic reticulum and its reorganization at fertilization. J Cell Biol. 1991;114(5):929–40.

    Article  PubMed  CAS  Google Scholar 

  37. Terasaki M, Jaffe LA, Hunnicutt GR, Hammer III JA. Structural change of the endoplasmic reticulum during fertilization: evidence for loss of membrane continuity using the green fluorescent protein. Dev Biol. 1996;179(2):320–8.

    Article  PubMed  CAS  Google Scholar 

  38. Subramanian K, Meyer T. Calcium-induced restructuring of nuclear envelope and endoplasmic reticulum calcium stores. Cell. 1997;89(6):963–71.

    Article  PubMed  CAS  Google Scholar 

  39. Ribeiro CM, McKay RR, Hosoki E, Bird GS, Putney Jr JW. Effects of elevated cytoplasmic calcium and protein kinase C on endoplasmic reticulum structure and function in HEK293 cells. Cell Calcium. 2000;27(3):175–85. doi:10.1054/ceca.2000.0108.

    Article  PubMed  CAS  Google Scholar 

  40. Banno T, Kohno K. Conformational changes of smooth endoplasmic reticulum induced by brief anoxia in rat Purkinje cells. J Comp Neurol. 1996;369(3):462–71. doi:10.1002/(SICI)1096-9861(19960603)369:3<462::AID-CNE10>3.0.CO;2-K.

    Article  PubMed  CAS  Google Scholar 

  41. Banno T, Kohno K. Conformational changes of the smooth endoplasmic reticulum are facilitated by L-glutamate and its receptors in rat Purkinje cells. J Comp Neurol. 1998;402(2):252–63.

    Article  PubMed  CAS  Google Scholar 

  42. Sokka AL, Putkonen N, Mudo G, Pryazhnikov E, Reijonen S, Khiroug L, et al. Endoplasmic reticulum stress inhibition protects against excitotoxic neuronal injury in the rat brain. J Neurosci. 2007;27(4):901–8. doi:10.1523/JNEUROSCI.4289-06.2007.

    Article  PubMed  CAS  Google Scholar 

  43. Kucharz K, Krogh M, Ng AN, Toresson H. NMDA receptor stimulation induces reversible fission of the neuronal endoplasmic reticulum. PLoS One. 2009;4(4):e5250. doi:10.1371/journal.pone.0005250.

    Article  PubMed  Google Scholar 

  44. Kucharz K, Wieloch T, Toresson H. Potassium-induced structural changes of the endoplasmic reticulum in pyramidal neurons in murine organotypic hippocampal slices. J Neurosci Res. 2011;89(8):1150–9. doi:10.1002/jnr.22646.

    Article  PubMed  CAS  Google Scholar 

  45. Kucharz K, Wieloch T, Toresson H. Rapid fragmentation of the endoplasmic reticulum in cortical neurons of the mouse brain in situ following cardiac arrest. J Cereb Blood Flow Metab. 2011;31(8):1663–7. doi:10.1038/jcbfm.2011.37.

    Article  PubMed  CAS  Google Scholar 

  46. Ramirez OA, Hartel S, Couve A. Location matters: the endoplasmic reticulum and protein trafficking in dendrites. Biol Res. 2011;44(1):17–23. doi:10.4067/S0716-97602011000100004/S0716-97602011000100003.

    Article  PubMed  CAS  Google Scholar 

  47. Park JS, Bateman MC, Goldberg MP. Rapid alterations in dendrite morphology during sublethal hypoxia or glutamate receptor activation. Neurobiol Dis. 1996;3(3):215–27. doi:10.1006/nbdi.1996.0022S0969-9961(96)90022-4.

    Article  PubMed  CAS  Google Scholar 

  48. Hasbani MJ, Schlief ML, Fisher DA, Goldberg MP. Dendritic spines lost during glutamate receptor activation reemerge at original sites of synaptic contact. J Neurosci. 2001;21(7):2393–403.

    PubMed  CAS  Google Scholar 

  49. Mizielinska SM, Greenwood SM, Tummala H, Connolly CN. Rapid dendritic and axonal responses to neuronal insults. Biochem Soc Trans. 2009;37(Pt 6):1389–93. doi:10.1042/BST0371389.

    Article  PubMed  CAS  Google Scholar 

  50. Mattson MP, Engle MG, Rychlik B. Effects of elevated intracellular calcium levels on the cytoskeleton and tau in cultured human cortical neurons. Mol chem neuropathol Int Soc Neurochem World Fed Neurol res groups neurochem cerebrospinal fluid. 1991;15(2):117–42.

    CAS  Google Scholar 

  51. Harvey J, Collingridge GL. Thapsigargin blocks the induction of long-term potentiation in rat hippocampal slices. Neurosci Lett. 1992;139(2):197–200.

    Article  PubMed  CAS  Google Scholar 

  52. Kann O, Kovacs R. Mitochondria and neuronal activity. Am j physiol Cell physiol. 2007;292(2):C641–57. doi:10.1152/ajpcell.00222.2006.

    Article  PubMed  CAS  Google Scholar 

  53. Klopfenstein DR, Kappeler F, Hauri HP. A novel direct interaction of endoplasmic reticulum with microtubules. EMBO J. 1998;17(21):6168–77. doi:10.1093/emboj/17.21.6168.

    Article  PubMed  CAS  Google Scholar 

  54. Voeltz GK, Prinz WA, Shibata Y, Rist JM, Rapoport TA. A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell. 2006;124(3):573–86.

    Article  PubMed  CAS  Google Scholar 

  55. Park SH, Zhu PP, Parker RL, Blackstone C. Hereditary spastic paraplegia proteins REEP1, spastin, and atlastin-1 coordinate microtubule interactions with the tubular ER network. J Clin Invest. 2010;120(4):1097–110. doi:10.1172/JCI40979.

    Article  PubMed  CAS  Google Scholar 

  56. Hu J, Shibata Y, Zhu PP, Voss C, Rismanchi N, Prinz WA, et al. A class of dynamin-like GTPases involved in the generation of the tubular ER network. Cell. 2009;138(3):549–61. doi:10.1016/j.cell.2009.05.025.

    Article  PubMed  CAS  Google Scholar 

  57. Orso G, Pendin D, Liu S, Tosetto J, Moss TJ, Faust JE, et al. Homotypic fusion of ER membranes requires the dynamin-like GTPase atlastin. Nature. 2009;460(7258):978–83. doi:10.1038/nature08280.

    Article  PubMed  CAS  Google Scholar 

  58. Roy L, Bergeron JJ, Lavoie C, Hendriks R, Gushue J, Fazel A, et al. Role of p97 and syntaxin 5 in the assembly of transitional endoplasmic reticulum. Mol Biol Cell. 2000;11(8):2529–42.

    Article  PubMed  CAS  Google Scholar 

  59. de Brito OM, Scorrano L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature. 2008;456(7222):605–10. doi:10.1038/nature07534.

    Article  PubMed  Google Scholar 

  60. Knott AB, Perkins G, Schwarzenbacher R, Bossy-Wetzel E. Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci. 2008;9(7):505–18. doi:10.1038/nrn2417.

    Article  PubMed  CAS  Google Scholar 

  61. Scott I, Youle RJ. Mitochondrial fission and fusion. Essays biochem. 2010;47:85–98. doi:10.1042/bse0470085.

    Article  PubMed  CAS  Google Scholar 

  62. Kirchhausen T. Three ways to make a vesicle. Nat Rev Mol Cell Biol. 2000;1(3):187–98. doi:10.1038/35043117.

    Article  PubMed  CAS  Google Scholar 

  63. Pucadyil TJ, Schmid SL. Conserved functions of membrane active GTPases in coated vesicle formation. Science. 2009;325(5945):1217–20. doi:10.1126/science.1171004.

    Article  PubMed  CAS  Google Scholar 

  64. Park MK, Petersen OH, Tepikin AV. The endoplasmic reticulum as one continuous Ca2+ pool: visualization of rapid Ca2+ movements and equilibration. EMBO J. 2000;19(21):5729–39.

    Article  PubMed  CAS  Google Scholar 

  65. Dayel MJ, Hom EF, Verkman AS. Diffusion of green fluorescent protein in the aqueous-phase lumen of endoplasmic reticulum. Biophys J. 1999;76(5):2843–51. doi:10.1016/S0006-3495(99)77438-2.

    Article  PubMed  CAS  Google Scholar 

  66. Holbro N, Grunditz A, Oertner TG. Differential distribution of endoplasmic reticulum controls metabotropic signaling and plasticity at hippocampal synapses. Proc Natl Acad Sci U S A. 2009;106(35):15055–60. doi:10.1073/pnas.0905110106.

    Article  PubMed  CAS  Google Scholar 

  67. Bardo S, Cavazzini MG, Emptage N. The role of the endoplasmic reticulum Ca2+ store in the plasticity of central neurons. Trends Pharmacol Sci. 2006;27(2):78–84. doi:10.1016/j.tips.2005.12.008.

    Article  PubMed  CAS  Google Scholar 

  68. Bouchard R, Pattarini R, Geiger JD. Presence and functional significance of presynaptic ryanodine receptors. Prog Neurobiol. 2003;69(6):391–418.

    Article  PubMed  CAS  Google Scholar 

  69. Villa A, Podini P, Clegg DO, Pozzan T, Meldolesi J. Intracellular Ca2+ stores in chicken Purkinje neurons—differential distribution of the low affinity-high capacity Ca2+ binding-protein, calsequestrin, of Ca2+ Atpase and of the Er lumenal protein, Bip. J Cell Biol. 1991;113(4):779–91.

    Article  PubMed  CAS  Google Scholar 

  70. Walton PD, Airey JA, Sutko JL, Beck CF, Mignery GA, Sudhof TC, et al. Ryanodine and inositol trisphosphate receptors coexist in avian cerebellar Purkinje neurons. J Cell Biol. 1991;113(5):1145–57.

    Article  PubMed  CAS  Google Scholar 

  71. Johnson RJ, Pyun HY, Lytton J, Fine RE. Differences in the subcellular localization of calreticulin and organellar Ca(2+)-ATPase in neurons. Brain Res Mol Brain Res. 1993;17(1–2):9–16.

    Article  PubMed  CAS  Google Scholar 

  72. Lynes EM, Simmen T. Urban planning of the endoplasmic reticulum (ER): how diverse mechanisms segregate the many functions of the ER. Biochim Biophys Acta. 2011;1813(10):1893–905. doi:10.1016/j.bbamcr.2011.06.011.

    Article  PubMed  CAS  Google Scholar 

  73. Lau A, Tymianski M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch. 2010;460(2):525–42. doi:10.1007/s00424-010-0809-1.

    Article  PubMed  CAS  Google Scholar 

  74. Globus MY, Busto R, Dietrich WD, Martinez E, Valdes I, Ginsberg MD. Effect of ischemia on the in vivo release of striatal dopamine, glutamate, and gamma-aminobutyric acid studied by intracerebral microdialysis. J Neurochem. 1988;51(5):1455–64.

    Article  PubMed  CAS  Google Scholar 

  75. Lowry OH, Passonneau JV, Hasselberger FX, Schulz DW. Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain. J Biol Chem. 1964;239:18–30.

    PubMed  CAS  Google Scholar 

  76. Hansen AJ. Effect of anoxia on ion distribution in the brain. Physiol Rev. 1985;65(1):101–48.

    PubMed  CAS  Google Scholar 

  77. Silver IA, Erecinska M. Ion homeostasis in rat brain in vivo: intra- and extracellular [Ca2+] and [H+] in the hippocampus during recovery from short-term, transient ischemia. J Cereb Blood Flow Metab. 1992;12(5):759–72.

    Article  PubMed  CAS  Google Scholar 

  78. Benveniste H, Drejer J, Schousboe A, Diemer NH. Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem. 1984;43(5):1369–74.

    Article  PubMed  CAS  Google Scholar 

  79. Rutkowski DT, Hegde RS. Regulation of basal cellular physiology by the homeostatic unfolded protein response. J Cell Biol. 2010;189(5):783–94. doi:10.1083/jcb.201003138.

    Article  PubMed  CAS  Google Scholar 

  80. Hutchens MP, Traystman RJ, Fujiyoshi T, Nakayama S, Herson PS. Normothermic cardiac arrest and cardiopulmonary resuscitation: a mouse model of ischemia-reperfusion injury. J Vis Exp. 2011(54). doi:10.3791/3116.

  81. Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R. Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene. 2008;27(50):6407–18. doi:10.1038/onc.2008.308.

    Article  PubMed  CAS  Google Scholar 

  82. Olsen TS, Weber UJ, Kammersgaard LP. Therapeutic hypothermia for acute stroke. Lancet Neurol. 2003;2(7):410–6.

    Article  PubMed  Google Scholar 

  83. Krieger DW, Yenari MA. Therapeutic hypothermia for acute ischemic stroke: what do laboratory studies teach us? Stroke. 2004;35(6):1482–9. doi:10.1161/01.STR.0000126118.44249.5c01.STR.0000126118.44249.5c.

    Article  PubMed  Google Scholar 

  84. Baker CJ, Fiore AJ, Frazzini VI, Choudhri TF, Zubay GP, Solomon RA. Intraischemic hypothermia decreases the release of glutamate in the cores of permanent focal cerebral infarcts. Neurosurgery. 1995;36(5):994–1001.

    Article  PubMed  CAS  Google Scholar 

  85. Takata T, Nabetani M, Okada Y. Effects of hypothermia on the neuronal activity, [Ca2+]i accumulation and ATP levels during oxygen and/or glucose deprivation in hippocampal slices of guinea pigs. Neurosci Lett. 1997;227(1):41–4.

    Article  PubMed  CAS  Google Scholar 

  86. Nedergaard M, Astrup J. Infarct rim: effect of hyperglycemia on direct current potential and [14C]2-deoxyglucose phosphorylation. J Cereb Blood Flow Metab. 1986;6(5):607–15.

    Article  PubMed  CAS  Google Scholar 

  87. Memezawa H, Smith ML, Siesjo BK. Penumbral tissues salvaged by reperfusion following middle cerebral artery occlusion in rats. Stroke. 1992;23(4):552–9.

    Article  PubMed  CAS  Google Scholar 

  88. Harris RJ, Branston NM, Symon L, Bayhan M, Watson A. The effects of a calcium antagonist, nimodipine, upon physiological responses of the cerebral vasculature and its possible influence upon focal cerebral ischaemia. Stroke. 1982;13(6):759–66.

    Article  PubMed  CAS  Google Scholar 

  89. Marrannes R, Willems R, De Prins E, Wauquier A. Evidence for a role of the N-methyl-d-aspartate (NMDA) receptor in cortical spreading depression in the rat. Brain Res. 1988;457(2):226–40.

    Article  PubMed  CAS  Google Scholar 

  90. Chapman AG. Glutamate and epilepsy. J Nutr. 2000;130(4S Suppl):1043S–5S.

    PubMed  CAS  Google Scholar 

  91. Chohan MO, Iqbal K. From tau to toxicity: emerging roles of NMDA receptor in Alzheimer's disease. J Alzheimers Dis. 2006;10(1):81–7.

    PubMed  CAS  Google Scholar 

  92. Zeron MM, Hansson O, Chen N, Wellington CL, Leavitt BR, Brundin P, et al. Increased sensitivity to N-methyl-d-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington's disease. Neuron. 2002;33(6):849–60.

    Article  PubMed  CAS  Google Scholar 

  93. Olney JW, Newcomer JW, Farber NB. NMDA receptor hypofunction model of schizophrenia. J Psychiatr Res. 1999;33(6):523–33.

    Article  PubMed  CAS  Google Scholar 

  94. Hazan J, Fonknechten N, Mavel D, Paternotte C, Samson D, Artiguenave F, et al. Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia. Nat Genet. 1999;23(3):296–303.

    Article  PubMed  CAS  Google Scholar 

  95. Zhao X, Alvarado D, Rainier S, Lemons R, Hedera P, Weber CH, et al. Mutations in a newly identified GTPase gene cause autosomal dominant hereditary spastic paraplegia. Nat Genet. 2001;29(3):326–31. doi:10.1038/ng758.

    Article  PubMed  CAS  Google Scholar 

  96. Viassolo V, Previtali SC, Schiatti E, Magnani G, Minetti C, Zara F, et al. Inclusion body myopathy, Paget's disease of the bone and frontotemporal dementia: recurrence of the VCP R155H mutation in an Italian family and implications for genetic counselling. Clin Genet. 2008;74(1):54–60. doi:10.1111/j.1399-0004.2008.00984.x.

    Article  PubMed  CAS  Google Scholar 

  97. Zuchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J, Dadali EL, et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot–Marie–Tooth neuropathy type 2A. Nat Genet. 2004;36(5):449–51. doi:10.1038/ng1341.

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest

Krzysztof Kucharz declares that he has no conflict of interest. Tadeusz Wieloch declares that he has no conflict of interest. Håkan Toresson declares that he has no conflict of interest. All institutional and national guidelines for the care and use of laboratory animals were followed (see respective papers).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kucharz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kucharz, K., Wieloch, T. & Toresson, H. Fission and Fusion of the Neuronal Endoplasmic Reticulum. Transl. Stroke Res. 4, 652–662 (2013). https://doi.org/10.1007/s12975-013-0279-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-013-0279-9

Keywords

Navigation