Skip to main content
Log in

The effect of N-TiO2 on tomato, onion, and radish seed germination

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

The effects of nano-size titanium dioxide (N-TiO2) on the germination of tomato (Lycopersicum esculentum L.), onion (Allium cepa L.), and radish (Raphanus sativus L.) seeds were assessed in laboratory and greenhouse trials. Seeds were germinated in Petri dishes in a laboratory and in peat:perlite (1:1, v/v) in a greenhouse containing four concentrations of N-TiO2 (0, 100, 200, and 400 mg L-1). N-TiO2 at 100 and 200 mg L-1 had the most positive effect on germination. In the laboratory, the highest germination percentage of tomato and onion was observed at 100 mg L-1 (100 and 30%, respectively), and in radish, 100% germination was obtained with 400 mg L-1. In the greenhouse, seedlings were tallest after exposure to 400 and 200 mg L-1 for tomato and onion, respectively, and 400 and 100 mg L-1 for radish. N-TiO2 may serve as a seed-priming agent for horticultural crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alimohammadi M, Xu Y, Wang DY, Biris AS, Khodakovskaya MV. 2001. Physiological responses induced in tomato plants by a two-component nanostructural system composed of carbon nanotubes conjugated with quantum dots and its in vivo multimodal detection. Nanotechnology 22: 295–101

    Google Scholar 

  • Cañas JE, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Olszyk E. 2008. Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ. Chem. Toxicol. 27: 1922–1931

    Article  Google Scholar 

  • Castiglione MR, Cremonini R. 2009. Nanoparticles and higher plants. Caryologia 62: 161–165

    Article  Google Scholar 

  • Castiglione MR, Giorgetti L, Geri C, Cremonini R. 2010. The effects of N-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis and Zea mays L. J. Nanoparticle Res. 13: 2443–2449

    Article  Google Scholar 

  • Clément L, Hurel C, Marmier N. 2013. Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants-effects of size and crystalline structure. Chemosphere 90: 1083–1090

    Article  PubMed  Google Scholar 

  • El-Temsah YS, Joner EJ. 2012. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ. Toxicol. 27: 42–49

    Article  CAS  PubMed  Google Scholar 

  • Fan RM, Huang YC, Grusak MA, Huang CP, Sherrier DJ. 2014. Effects of nano-TiO2 on the agronomically-relevant Rhizobium-legume symbiosis. Sci. Total Env. 466–467: 503–512

    Article  Google Scholar 

  • Feizi H, Amirmoradi S, Abdollahi F, Jahedi Pour S. 2013a. Comparative effects of nanosized and bulk titanium dioxide concentrations on medicinal plant Salvia officinalis L. Ann. Rev. Res. Biol. 3: 814–824

    Google Scholar 

  • Feizi H, Kamali M, Jafari L, Moghaddam PR. 2013b. Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere 91: 506–511

    Article  CAS  PubMed  Google Scholar 

  • Feizi H, Rezvani Moghaddam P, Shahtahmassebi N, Fotovat A. 2012. Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biol. Trace Elem. Res. 146: 101–106

    Article  CAS  PubMed  Google Scholar 

  • Geisler-Lee J, Brooks M, Gerfen JR, Wang Q, Fotis C, Sparer A, Ma X-M, Berg RH, Geisler M. 2014. Reproductive toxicity and life history study of silver nanoparticle effect, uptake and transport in Arabidopsis thaliana. Nano materials 4: 301–318

    CAS  Google Scholar 

  • Gimenez LJ, Martínez-Sanchez F, Moreno A. 1990. Titanium in plant nutrition. III. Effect of Ti (IV) on yield of Capsicum anuum L. In: Proceedings of III National Symposium on Mineral Nutrition of Plants, SPIC-UIB, pp 123–128

    Google Scholar 

  • Haghighi M, Heidarian S, Teixeira da Silva JA. 2012. The effect of titanium amendment in N-withholding nutrient solution on physiological and photosynthesis attributes and micro-nutrient uptake of tomato. Biol. Trace Elem. Res. 150: 381–390

    Article  PubMed  Google Scholar 

  • Hartman HT, Kester D, Davies FT, Geneve RL. 2002. Plant Propagation: Principles and Practices. Pearson Education, 7th ed, 880 p

    Google Scholar 

  • Khot LR, Sankaran S, Mari Maja J, Ehsani R, Schuster EW. 2012. Applications of nano materials in agricultural production and crop protection: A review. Crop Prot. 35: 64–70

    Article  CAS  Google Scholar 

  • Kuzel S, Hruby M, Cigler P, Tlustos O, Van PN. 2003. Mechanism of physiological effects of titanium leaf sprays on plants growth on soil. Biol. Trace Elem. Res. 91: 1–11

    Article  Google Scholar 

  • Lee CW, Mahendra S, Zodrow K, Li D, Tsai Y, Braam J, Alvarez PJJ. 2010. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ. Toxicol. Chem. 29: 669–

    Article  CAS  PubMed  Google Scholar 

  • Lin BS, Diao SQ, Li CH, Fang LJ, Qiao SC, Yu M. 2004. Effects of TMS (nanostructured silicon dioxide) on growth of Changbai larch seedlings. J. Forest. Res. 15: 138–140

    Article  CAS  Google Scholar 

  • Lin DH, Xing BS. 2007. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ. Pollut. 150: 243–250

    Article  CAS  PubMed  Google Scholar 

  • Lu CM, Zhang CY, Wen JQ, Wu GR, Tao MX. 2002. Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci. 21: 168–172

    CAS  Google Scholar 

  • Maleki N, Safavi A, Doroodmand MM. 2011. Fabrication of a room temperature hydrogen sensor based on thin film of single-walled carbon nanotubes doped with palladium nanoparticles. J. Exp. Nanosci. 22: 1–14

    Google Scholar 

  • Mishra V, Mishra RK, Dikshit A, Pandey AC. 2014. Interactions of nanoparticles with plants: an emerging prospective in the agriculture industry. In P Ahmad, S Rasool, Eds, Emerging Technologies and Management of Crop Stress Tolerance: Biological Techniques (Vol 1), Elsevier Inc., San Diego, pp 159–180

    Chapter  Google Scholar 

  • Mohammadi M, Doroodmand MM, Hoseini A, Habibagahi M. 2011. The effects of single walled carbon nanotubes (SWCNTs) on proliferation and apoptosis of human peripheral blood mononuclear cells (PBMCs). Clin. Biochem. 44: 290–295

    Article  Google Scholar 

  • Sarmiento C, Daood H, Pais I, Biacs PA. 1995. Effect of titanium ascorbate on lipoxygenase pathway of tomato and red pepper seedling. J. Plant Nutr. 18: 1291–1299

    Article  CAS  Google Scholar 

  • Seeger EM, Baun A, Kastner M, Trapp S. 2009. Insignificant acute toxicity of TiO2 nano particles to willow trees. J. Soils Sediment. 9: 46–53

    Article  CAS  Google Scholar 

  • Sheykhbaglou R, Sedghi M, Tajbakhsh Shishevan M, Seyed Sharifi R. 2010. Effects of nano-iron oxide particles on agronomic traits of soybean. Not. Sci. Biol. 2: 112–113

    Google Scholar 

  • Soleimani A, Doroodmand M, Sabaghi S. 2012. Comparative investigation on the correction factors of hydrogen permeability on CNTs-mixed matrix membrane. Int. J. Nano Dimensions 4: 217–221

    Google Scholar 

  • Su AH, Lin KF, Zhang W, Xu SY, Yang SS. Zhang M, Zhang LY. 2009. Effect of nano-TiO2 on the germination and growth of rape seed. J. Agro-Environ. Sci. 9: 2–19

    Google Scholar 

  • Yang F, Hong FS, You WJ, Liu C, Gao FQ, Wu C, Yang P. 2006. Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol. Trace. Elem. Res. 110: 179–190

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Watts DJ. 2005. Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol. Lett. 158: 122–132

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Hong F, Lu S, Liu C. 2005. Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol. Trace Elem. Res. 105: 839–841

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Haghighi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghighi, M., Teixeira da Silva, J.A. The effect of N-TiO2 on tomato, onion, and radish seed germination. J. Crop Sci. Biotechnol. 17, 221–227 (2014). https://doi.org/10.1007/s12892-014-0056-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-014-0056-7

Key words

Navigation