Skip to main content

Advertisement

Log in

Efficient Photoelectrocatalytic Degradation of BTEX Using TiO2/CuO/Cu2O Nanorod-Array Film as the Photoanode and MWCNT/GO/Graphite Felt as the Photocathode

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Wastewater treatment challenges by conventional methods have necessitated the need for alternative/complementary methods that are environmentally safe and efficient especially towards recalcitrant organic pollutants. In this regard, a novel highly active visible-light responsive photoanode with the ternary hybrid CuO/Cu2O/TiO2 nanorods array film is proposed to enhance electron transfer in the photoelectrocatalytic (PEC) degradation of BTEX (benzene, toluene, ethyl benzene, and xylenes) by combining with MWCNT/GO/GF cathode. Structural, morphological, optical, electrochemical, and elemental analysis of proposed electrodes is investigated in detail. Response surface methodology (RSM) comprising of full-factorial central composite design (CCD) with five factors and five levels has been used to examine the effects of different operating parameters such as electrode distance, current density, treatment time (t), solution pH, and conductivity in a PEC batch reactor. BTEX mineralization in aqueous solution was examined with multiple responses such as chemical oxygen demand (COD) and specific energy consumption. During multiple response optimization, the desirability function approach was employed to concurrently maximize COD removal and minimize energy consumption. At the optimum condition, 81.3% COD removal and 9.5 kWh/kg of COD removed were observed. The photoelectrocatalytic oxidization mechanism of BTEX with proposed anode and cathode was discussed, then the possible degradation pathway of BTEX identified using GC–MS.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Schematic 1
Fig. 12

Similar content being viewed by others

References

  1. E.T. Igunnu, G.Z. Chen, Int. J. Low-Carb. Technol. 9, 157 (2012)

    Google Scholar 

  2. J.M. Dickhout, J. Moreno, P.M. Biesheuvel, L. Boels, R.G.H. Lammertink, W.M. Vos, J. Colloid Interface Sci. 487, 523 (2017)

    CAS  PubMed  Google Scholar 

  3. I.O. Uribe, A. Mosquera-Corral, J.M. Lema, S. Esplugas, AICHE J. 61, 3146 (2015)

    CAS  Google Scholar 

  4. P.V. Nidheesh, M. Zhou, M.A. Oturan, Chemosphere 197, 210 (2018)

    CAS  PubMed  Google Scholar 

  5. I. Sirés, E. Brillas, M.A. Oturan, M.A. Rodrigo, M. Panizza, Environ. Sci. Pollut. Res. 21, 8336 (2014)

    Google Scholar 

  6. E. Oturan, N. Oturan, M.A. Oturan, Appl. Catal. B Environ. 226, 135 (2018)

    CAS  Google Scholar 

  7. O. Garcia-Rodriguez, Y.Y. Lee, H. Olvera-Vargas, F. Deng, Z. Wang, O. Lefebvre, Electrochim. Acta 276, 12 (2018)

    CAS  Google Scholar 

  8. G. Ren, M. Zhou, P. Su, L. Liang, W. Yang, E. Mousset, Chem. Eng. J. 343, 467 (2018)

    CAS  Google Scholar 

  9. B.O. Orimolade, O.A. Arotiba, Electrocatalysis 10, 429 (2019)

    CAS  Google Scholar 

  10. S. Maddila, V.O. Ndabankulu, S.B. Jonnalagadda, Global Nest J. 18, 269 (2016)

    CAS  Google Scholar 

  11. G.G. Bessegato, T.T. Guaraldo, J.F. Brito, M.F. Brugnera, M.V.B. Zanoni, Electrocatalysis 6, 415 (2015)

    CAS  Google Scholar 

  12. E.O. Oseghe, S. Maddila, P.G. Ndungu, S.B. Jonnalagadda, Appl. Catal. B Environ. 176-177, 288 (2015)

    CAS  Google Scholar 

  13. B. Ayoubi-Feiz, S. Aber, M. Sheydaei, RSC Adv. 5, 19368 (2015)

    CAS  Google Scholar 

  14. A. Perek-Dlugosz, A. Socha, M. Socha, J. Rynkowski, Electrocatalysis 6, 563 (2015)

    CAS  Google Scholar 

  15. Q. Ma, H. Wang, H. Zhang, X. Cheng, M. Xie, Q. Cheng, Sep. Purif. Technol. 189, 193 (2017)

    CAS  Google Scholar 

  16. G. Kumordzi, G. Malekshoar, E.K. Yanful, A.K. Ray, Sep. Purif. Technol. 168, 294 (2016)

    CAS  Google Scholar 

  17. L. Zeng, Z. Lu, M. Li, J. Yang, W. Song, D. Zeng, C. Xie, Appl. Catal. B Environ. 183, 308 (2016)

    CAS  Google Scholar 

  18. Y.A. Shaban, A.A. El Maradny, R.K. Al Farawati, J. Photochem. Photobiol. A Chem. 328, 114 (2016)

    CAS  Google Scholar 

  19. T. Boningari, S.N.R. Inturi, M. Suidan, P.G. Smirniotis, Chem. Eng. J. 339, 249 (2018)

    CAS  Google Scholar 

  20. J. You, Y. Guo, R. Guo, X. Liu, Chem. Eng. J. 373, 624 (2019)

    CAS  Google Scholar 

  21. Y. Zhang, W. Cui, W. An, L. Liu, Y. Liang, Y. Zhu, Appl. Catal. B Environ. 221, 36 (2018)

    CAS  Google Scholar 

  22. R.D.C. Soltani, A. Rezaee, A.R. Khataee, H. Godini, Res. Chem. Intermed. 39, 4277 (2013)

    CAS  Google Scholar 

  23. C. Trellu, N. Oturan, F.K. Keita, C. Fourdrin, Y. Pechaud, M.A. Oturan, Environ. Sci. Technol. 52, 7450 (2018)

    CAS  PubMed  Google Scholar 

  24. A. Özcan, A. Atılır Özcan, Y. Demirci, Chem. Eng. J. 304, 518 (2016)

    Google Scholar 

  25. P.A. Diaw, N. Oturan, M.D.G. Seye, A. Coly, A. Tine, J.J. Aaron, M.A. Oturan, Sep. Purif. Technol. 186, 197 (2017)

    CAS  Google Scholar 

  26. E. Mousset, Z. Wang, J. Hammaker, O. Lefebvre, Electrochim. Acta 214, 217 (2016)

    CAS  Google Scholar 

  27. D. Dixon, D.J. Babu, J. Langner, M. Bruns, L. Pfaffmann, A. Bhaskar, J.J. Schneider, F. Scheiba, H. Ehrenberg, J. Power Sources 332, 240 (2016)

    CAS  Google Scholar 

  28. M. Etesami, E. Abouzari-Lotf, A. Ripin, M. Mahmoud Nasef, T.M. Ting, A. Saharkhiz, A. Ahmad, Int. J. Hydrog. Energy 43, 189 (2018)

    CAS  Google Scholar 

  29. G. Hu, M. Jing, D.W. Wang, Z. Sun, C. Xu, W. Ren, H.M. Cheng, C. Yan, X. Fan, F. Li, Energy Storage Mater. 13, 66 (2018)

    Google Scholar 

  30. I. Mustafa, I. Lopez, H. Younes, R.A. Susantyoko, R.A. Al-Rub, S. Almheiri, Electrochim. Acta 230, 222 (2017)

    CAS  Google Scholar 

  31. M. Park, I.Y. Jeon, J. Ryu, J.B. Baek, J. Cho, Adv. Energy Mater. 5 (2015)

  32. P. Moozarm Nia, E. Abouzari-Lotf, A. Arshad, M.M. Nasef, A. Ripin, J. Electrochem. Soc. 165, E429 (2018)

    Google Scholar 

  33. A. Fetyan, G.A. El-Nagar, I. Derr, P. Kubella, H. Dau, C. Roth, Electrochim. Acta 268, 59 (2018)

    CAS  Google Scholar 

  34. K.J. Kim, M.S. Park, J.H. Kim, U. Hwang, N.J. Lee, G. Jeong, Y.J. Kim, Chem. Commun. 48, 5455 (2012)

    CAS  Google Scholar 

  35. P.M. Nia, W.P. Meng, Y. Alias, Appl. Surf. Sci. 357, 1565 (2015)

    CAS  Google Scholar 

  36. L. Wei, T.S. Zhao, L. Zeng, X.L. Zhou, Y.K. Zeng, Appl. Energy 180, 386 (2016)

    CAS  Google Scholar 

  37. X. Wu, H. Xu, L. Lu, H. Zhao, J. Fu, Y. Shen, P. Xu, Y. Dong, J. Power Sources 250, 274 (2014)

    CAS  Google Scholar 

  38. Q. Deng, P. Huang, W.X. Zhou, Q. Ma, N. Zhou, H. Xie, W. Ling, C.J. Zhou, Y.X. Yin, X.W. Wu, X.Y. Lu, Y.G. Guo, Adv. Energy Mater. 7 (2017)

    Google Scholar 

  39. C. Noh, S. Moon, Y. Chung, Y. Kwon, J. Mater. Chem. A 5, 21334 (2017)

    CAS  Google Scholar 

  40. Chandrasekhar P (2018) Conducting polymers, Fundamentals and Applications 49

    Google Scholar 

  41. P.V. Nidheesh, Environ. Sci. Pollut. Control Ser. 24, 27047 (2017)

    CAS  Google Scholar 

  42. W.S. Hummers Jr., R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)

    CAS  Google Scholar 

  43. B. Liu, E.S. Aydil, J. Am. Chem. Soc. 131, 3985 (2009)

    CAS  PubMed  Google Scholar 

  44. T.X.H. Le, M. Bechelany, M. Cretin, Carbon 122, 564 (2017)

    CAS  Google Scholar 

  45. B.V. Rodrigues, N.C. Leite, B.N. Cavalcanti, N.S. Silva, F.R. Marciano, E.J. Corat, T.J. Webster, A.O. Lobo, Int. J. Nanomedicine 11, 2569 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  46. S.-Y. Yua, Y. Gao, F.-Z. Chen, G.-C. Fan, D.-M. Han, C. Wang, W.-W. Zhao, Sensors Actuators B Chem. 290, 312 (2019)

    Google Scholar 

  47. Y.H. Zhu, Z.W. Xu, K. Yan, H.B. Zhao, J.D. Zhang, ACS Appl. Mater. Interfaces 9, 40452 (2017)

    CAS  PubMed  Google Scholar 

  48. M. Alizadeh, S.M. Sadrameli, Energ. Buildings 164, 187 (2018)

    Google Scholar 

  49. M. Alizadeh, S.M. Sadrameli, Energ. Buildings 188–189, 297 (2019)

    Google Scholar 

  50. M. Panizza, A. Dirany, I. Sirés, M. Haidar, N. Oturan, M.A. Oturan, J. Appl. Electrochem. 44, 1327 (2014)

    CAS  Google Scholar 

  51. Y. Wang, C. Shen, M. Zhang, B.T. Zhang, Y.G. Yu, Chem. Eng. J. 296, 79 (2016)

    CAS  Google Scholar 

  52. S. Kumar, S. Singh, V.C. Srivastava, Chem. Eng. J. 263, 135 (2015)

    CAS  Google Scholar 

  53. H. Liu, S. Grot, B.E. Logan, Environ. Sci. Technol. 39, 4317 (2005)

    CAS  PubMed  Google Scholar 

  54. K. Gai, J. Chin. Chem. Soc. 53, 627 (2006)

    CAS  Google Scholar 

  55. K.G. Pavithra, P.S. Kumar, F.C. Christopher, A. Saravanan, J. Phys. Chem. Solids 110, 379 (2017)

    CAS  Google Scholar 

  56. X. Xua, H. Zhaoa, R. Wang, Z. Zhanga, X. Dong, J. Pana, J. Hua, H. Zeng, Nano Energy 48, 337 (2018)

    Google Scholar 

  57. M. Kobya, E. Gengec, E. Demirbas, Chem. Eng. Process. Process Intensif. 101, 87 (2016)

    CAS  Google Scholar 

  58. N. Barhoumi, H. Olvera-Vargas, N. Oturan, D. Huguenot, A. Gadri, S. Ammar, E. Brillas, M.A. Oturan, Appl. Catal. B Environ. 209, 637 (2017)

    CAS  Google Scholar 

  59. D.G. Bassyouni, H.A. Hamad, E.-S.Z. El-Ashtoukhy, N.K. Amin, M.M.A. El-Latif, J. Hazard. Mater. 335, 178 (2017)

    CAS  PubMed  Google Scholar 

  60. E. Petrucci, L.D. Palma, R. Lavecchia, A. Zuorro, J. Ind. Eng. Chem. 26, 116 (2015)

    CAS  Google Scholar 

  61. I.M.S. Pillai, A.K. Gupta, J. Environ. Manag. 176, 45 (2016)

    Google Scholar 

  62. K.W. Pi, Q. Xiao, H.Q. Zhang, M. Xia, A.R. Gerson, Process. Saf. Environ. Prot. 92, 796 (2014)

    CAS  Google Scholar 

  63. A. Attour, M. Touati, M. Tlili, M.B. Amor, F. Lapicque, J.P. Leclerc, Sep. Purif. Technol. 123, 124 (2014)

    CAS  Google Scholar 

  64. H. Hamad, D. Bassyouni, E.-S. El-Ashtoukhy, N. Amin, M.A. El-Latif, Ecotoxicol. Environ. Saf. 148, 501 (2018)

    CAS  PubMed  Google Scholar 

  65. A. Vázquez, I. Rodríguez, I. Lázaro, Chem. Eng. J. 179, 253 (2012)

    Google Scholar 

  66. S. Garcia-Segura, M.M. S.G.Eiband, J.V. Meloa, C.A. Martínez-Huitle, J. Electroanal. Chem. 801, 267 (2017)

    CAS  Google Scholar 

  67. J.F. Martínez-Villafañe, C. Montero-Ocampo, A.M. García-Lara, J. Hazard. Mater. 172, 1617 (2009)

    PubMed  Google Scholar 

  68. E. Brillas, C.A. Martínez-Huitle, Appl. Catal. B Environ. 166–167, 603 (2015)

    Google Scholar 

  69. Y. Gendel, O. Lahav, J. Hazard. Mater. 183, 596 (2010)

    CAS  PubMed  Google Scholar 

  70. M. Panizza, A. Barbucci, R. Ricotti, G. Cerisola, Sep. Purif. Technol. 54, 382 (2007)

    CAS  Google Scholar 

  71. Dixon WT and Norman ROC (1964) J. Chem. Soc. (resumed):4850

  72. E.T. Denisov, D.I. Metelitsa, Russ. Chem. Rev. 37, 1547 (1968)

    CAS  Google Scholar 

  73. Z.W. Cheng, S. Peng-fei, Y.F. Jiang, J.M. Yu, J.M. Chen, Chem. Eng. J. 228, 1003 (2013)

    CAS  Google Scholar 

  74. R.A. Kenley, J.E. Davenport, D.G. Hendry, J. Phys. Chem. 85, 2740 (1981)

    CAS  Google Scholar 

  75. M. Rakibuddina, R. Ananthakrishnan, Photochem. Photobiol. Sci. 15, 86 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iraj Naser.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 3090 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safarvand, D., Naser, I., Samipourgiri, M. et al. Efficient Photoelectrocatalytic Degradation of BTEX Using TiO2/CuO/Cu2O Nanorod-Array Film as the Photoanode and MWCNT/GO/Graphite Felt as the Photocathode. Electrocatalysis 11, 188–202 (2020). https://doi.org/10.1007/s12678-019-00576-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-019-00576-9

Keywords

Navigation