Skip to main content
Log in

Pt3M (M: Co, Ni and Fe) Bimetallic Alloy Nanoclusters as Support-Free Electrocatalysts with Improved Activity and Durability for Dioxygen Reduction in PEM Fuel Cells

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Pt3M (M: Co, Ni and Fe) bimetallic alloy nanoclusters were synthesized by a novel and simple chemical reduction approach, and employed as the promising electrocatalyst to accelerate the kinetics of oxygen reduction reaction (ORR) for polymer electrolyte membrane fuel cells. From XRD, the positive shift of diffraction angle confirms the alloy formation between Pt and M and the elemental composition was confirmed by energy dispersive X-ray spectroscopy analysis. The nanocluster morphology and particle size was determined using scanning and transmission electron microscopy analysis. The ORR kinetic parameters for Pt-M electrocatalysts were calculated and compared with reported Pt/C catalysts. Among the Pt-M electrocatalysts, Pt-Co was found to be the most efficient catalyst having the higher mass and specific activity (at 0.9 V vs. RHE) of 0.44 mA/μg and 0.69 mA/cm2, respectively. The accelerated durability test reveals that the Pt-M bimetallic alloy nanoclusters retain appreciable surface area and mass activity after 8000 potential cycles confirms good long-term durability, and also competing with the reported benchmark ORR catalysts.

TEM image of Pt3Co bimetallic alloy nanocluster with cyclic voltammograms of Pt3M (M: Co, Ni & Fe) electrocatalysts

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Rabis, P. Rodriguez, T.J. Schmidt, ACS Catal 2, 864 (2012)

    Article  CAS  Google Scholar 

  2. M.K. Debe, Nature 486, 43 (2012)

    Article  CAS  Google Scholar 

  3. W. Yu, M.D. Porosoff, J.G. Chen, Chem Rev 112, 5780 (2012)

    Article  CAS  Google Scholar 

  4. Y.J. Wang, D.P. Wilkinson, J. Zhang, Chem Rev 111, 7625 (2011)

    Article  CAS  Google Scholar 

  5. S.D. Knights, K.M. Colbow, J. St-Pierre, D.P. Wilkinson, J Power Sources 127, 127 (2004)

    Article  CAS  Google Scholar 

  6. A.V. Virkar, Y.J. Zhou, J Electrochem Soc 154, B540 (2007)

    Article  CAS  Google Scholar 

  7. S. Sun, G. Zhang, D. Geng, Y. Chen, R. Li, M. Cai, X. Sun, Angew Chem Int Ed 50, 422 (2011)

    Article  CAS  Google Scholar 

  8. Y. Xu, S. Hou, Y. Liu, Y. Zhang, H. Wang, B. Zhang, Chem Commun 48, 2665 (2012)

    Article  CAS  Google Scholar 

  9. B. Narayanamoorthy, B.V.V.S. Pavan Kumar, M. Eswaramoorthy, S. Balaji, Mater Res Bull 55, 137 (2014)

    Article  CAS  Google Scholar 

  10. B.Y. Xia, W.T. Ng, H.B. Wu, X. Wang, X.W. David Lou, Angew Chem Int Ed 51, 7213 (2012)

    Article  CAS  Google Scholar 

  11. C.L. Lee, C.C. Wu, H.P. Chiou, C.M. Syu, C.H. Huang, C.C. Yang, Int J Hydrogen Energy 36, 6433 (2011)

    Article  CAS  Google Scholar 

  12. Z. Chen, M. Waje, W. Li, Y. Yan, Angew Chem 119, 4138 (2007)

    Article  Google Scholar 

  13. J. Xu, G. Fu, Y. Tang, Y. Zhou, Y. Chen, T. Lu, J Mater Chem 22, 13585 (2012)

    Article  CAS  Google Scholar 

  14. L. Su, W. Jia, C.M. Li, Y. Lei, ChemSusChem 7, 361 (2014)

    Article  CAS  Google Scholar 

  15. S. Praserthdam, P.B. Balbuena, Catal Sci Technol (2016). doi:10.1039/C5CY02287H

    Google Scholar 

  16. J. Greeley, I.E.L. Stephens, A.S. Bondarenko, T.P. Johansson, H.A. Hansen, T.F. Jaramillo, J. Rossmeisl, I. Chorkendorff, J.K. Norskov, Nature Chem 1, 552–556 (2009)

    Article  CAS  Google Scholar 

  17. R. Lewis, R. Gomer, Surf Sci 12, 157–176 (1968)

    Article  CAS  Google Scholar 

  18. Q. He, S. Mukerjee, Electrochim Acta 55, 1709 (2010)

    Article  CAS  Google Scholar 

  19. W. Zhang, X. Lu, Nanotechnol Rev 2, 487 (2013)

    CAS  Google Scholar 

  20. S. Guo, S. Zhang, S. Sun, Angew Chem Int Ed 52, 2 (2013)

    Google Scholar 

  21. S. Guo, D. Li, H. Zhu, S. Zhang, N.M. Markovic, V.R. Stamenkovic, S. Sun, Angew Chem Int Ed 52, 3465 (2013)

    Article  CAS  Google Scholar 

  22. D. Li, C. Wang, D. Tripkovic, S. Sun, N.M. Markovic, V.R. Stamenkovic, ACS Catal 2, 1358 (2012)

    Article  CAS  Google Scholar 

  23. Q. Jia, W. Liang, M.K. Bates, P. Mani, W. Lee, S. Mukerjee, ACS Nano 9, 387 (2015)

    Article  CAS  Google Scholar 

  24. D. Vliet, C. Wang, M. Debe, R. Atanasoski, N.M. Markovic, V.R. Stamenkovic, Electrochim Acta 56, 8695–8699 (2011)

    Article  Google Scholar 

  25. R. Lin, T. Zhao, M. Shang, J. Wang, W. Tang, V.E. Guterman, J. Ma, J Power Sources 293, 274–282 (2015)

    Article  CAS  Google Scholar 

  26. M. Li, Y. Lei, N. Sheng, T. Ohtsuka, J Power Sources 294, 420–429 (2015)

    Article  CAS  Google Scholar 

  27. T. Yang, G. Cao, Q. Huang, Y. Ma, S. Wan, H. Zhao, N. Li, F. Yin, X. Sun, D. Zhang, M. Wang, J Power Sources 291, 201–208 (2015)

    Article  CAS  Google Scholar 

  28. J.B. Xu, T.S. Zhao, W.W. Yang, S.Y. Shen, Int J Hydrogen Energy 35, 8699 (2010)

    Article  CAS  Google Scholar 

  29. B. Narayanamoorthy, K.K.R. Datta, M. Eswaramoorthy, S. Balaji, RSC Adv 4, 55571 (2014)

    Article  CAS  Google Scholar 

  30. C. Wang, H. Daimon, T. Onodera, T. Koda, S. Sun, Angew Chem Int Ed 47, 3588 (2008)

    Article  CAS  Google Scholar 

  31. P. Mania, R. Srivastava, P. Strasser, J Power Sources 196, 666 (2011)

    Article  Google Scholar 

  32. D. Wang, H.L. Xin, R. Hovden, H. Wang, Y. Yu, D.A. Muller, F.J. Disalvo, H.D. Abruna, Nat Mater 12, 81 (2013)

    Article  CAS  Google Scholar 

  33. J. Wu, J. Zhang, Z. Peng, S. Yang, F.T. Wagner, H. Yang, J Am Chem Soc 132, 4984 (2010)

    Article  CAS  Google Scholar 

  34. Q. Jia, K. Caldwell, K. Strickland, J.M. Ziegelbauer, Z. Liu, Z. Yu, D.E. Ramaker, S. Mukerjee, ACS Catal 5, 176 (2015)

    Article  CAS  Google Scholar 

  35. S. Mukerjee, S. Srinivasan, M.P. Soriaga, J. McBreen, J Electrochem Soc 142, 1409 (1995)

    Article  CAS  Google Scholar 

  36. V.S. Murthi, R.C. Urian, S. Mukerjee, J Phys Chem B 108, 11011 (2004)

    Article  CAS  Google Scholar 

  37. M. Teliska, V.S. Murthi, S. Mukerjee, D.E. Ramaker, J Electrochem Soc 152, A2159 (2005)

    Article  Google Scholar 

  38. K.J.J. Mayrhofer, B.B. Blizanac, M. Arenz, V.R. Stamenkovic, P.N. Ross, N.M. Markovic, J Phys Chem B 109, 14433 (2005)

    Article  CAS  Google Scholar 

  39. B. Geboes, I. Mintsouli, B. Wouters, J. Georgieva, A. Kakaroglou, S. Sotiropoulos, E. Valova, S. Armyanov, A. Hubin, T. Breugelmans, Appl Catal, B 150–151, 249 (2014)

    Article  Google Scholar 

  40. K. Jayasayee, J.A.R.V. Veen, T.G. Manivasagam, S. Celebi, E.J.M. Hensen, F.A. de Bruijn, Appl Catal, B 111–112, 515 (2012)

    Article  Google Scholar 

  41. A. Maljusch, E. Ventosa, R.A. Rincón, A.S. Bandarenka, W. Schuhmann, Electrochem Commun 38, 142 (2014)

    Article  CAS  Google Scholar 

  42. R. Wang, D.C. Higgins, M.A. Hoque, D.U. Lee, F. Hassan, Z. Chen, Sci Rep (2013). doi:10.1038/srep02431

    Google Scholar 

  43. K.S. Alcantara, O.S. Feria, Fuel Cells 10, 84 (2010)

    Google Scholar 

  44. Y.J. Lee, Y.C. Hsieh, H.C. Tsai, I.T. Lu, Y.H. Wu, T.H. Yu, J.F. Leed, B.V. Merinov, W.A. Goddard, P.W. Wu, Appl Catal, B 150–151, 636 (2014)

    Article  Google Scholar 

  45. B. Narayanamoorthy, K.K.R. Datta, S. Balaji, J Colloid Interface Sci 387, 213 (2012)

    Article  CAS  Google Scholar 

  46. C. Cui, L. Gan, H.H. Li, S.H. Yu, M. Heggen, P. Strasser, Nano Lett 12, 5885 (2012)

    Article  CAS  Google Scholar 

  47. C. Xu, H. Zhang, Q. Hao, H. Duan, ChemPlusChem 79, 107 (2014)

    Article  CAS  Google Scholar 

  48. Y. Kim, J.W. Hong, Y.W. Lee, M. Kim, D. Kim, W.S. Yun, S.W. Han, Angew Chem Int Ed 49, 10197 (2010)

    Article  CAS  Google Scholar 

  49. S. Du, Y. Lu, S.K. Malladi, Q. Xu, R. Steinberger-Wilckens, J Mater Chem A 2, 692 (2014)

    Article  CAS  Google Scholar 

  50. J.H. Jang, E. Lee, J. Park, G. Kim, S. Hong, Y.U. Kwon, Sci Rep (2013). doi:10.1038/srep02872

    Google Scholar 

  51. L. Liu, G. Samjeske, S. Takao, K. Nagasawa, Y. Iwasawa, J Power Sources 253, 1 (2014)

    Article  CAS  Google Scholar 

  52. D.S. Kim, C. Kim, J.K. Kim, J.H. Kim, H.H. Chun, H. Lee, Y.T. Kim, J Catal 291, 69 (2012)

    Article  CAS  Google Scholar 

  53. H.H. Wang, Z.Y. Zhou, Q. Yuan, N. Tian, S.G. Sun, Chem Commun 47, 3407 (2011)

    Article  CAS  Google Scholar 

  54. Y. Tan, J. Fan, G. Chen, N. Zheng, Q. Xie, Chem Commun 47, 11624 (2011)

    Article  CAS  Google Scholar 

  55. C. Koenigsmann, E. Sutter, T.A. Chiesa, R.R. Adzic, Nano Lett 12, 2013 (2012)

    Article  CAS  Google Scholar 

  56. S. Yang, D.Y. Chung, Y.J. Tak, J. Kim, H. Han, J.S. Yu, A. Soon, Y.E. Sung, H. Lee, Appl Catal, B 174, 35 (2015)

    Article  Google Scholar 

  57. DOE, 3.4 Fuel Cells, in: Fuel Cell Technol. Off. Multi-Year Res. Dev. Demonstr. Plan, (2014).

  58. F. Luo, S. Liao, D. Dang, Y. Zheng, D. Xu, H. Nan, T. Shu, Z. Fu, ACS Catal 5, 2242 (2015)

    Article  CAS  Google Scholar 

  59. G. Zhang, Z.G. Shao, W. Lu, F. Xie, X. Qin, B. Yi, Electrochim Acta 103, 66 (2013)

    Article  CAS  Google Scholar 

  60. H. Inoue, K. Hayashi, M. Chiku, E. Higuchi, ECS Trans 41, 2237 (2011)

    Article  CAS  Google Scholar 

  61. H. Liao, Y. Hou, Chem Mater 25, 457 (2013)

    Article  CAS  Google Scholar 

  62. Z. Zhang, M. Li, Z. Wu, W. Li, Nanotechnology (2011). doi:10.1088/0957-4484/22/1/015602

    Google Scholar 

  63. W.J. Khudhayer, N.N. Kariuki, X. Wang, D.J. Myers, A.U. Shaikh, T. Karabacak, J The Electrochem Soc 158, B1029 (2011)

    Article  CAS  Google Scholar 

  64. M.T. Nguyen, R.H. Wakabayashi, M. Yang, H.D. Abruna, F.J. DiSalvo, J Power Sources 280, 459 (2015)

    Article  CAS  Google Scholar 

  65. X. Wang, L.F. Cosme, X. Yang, M. Luo, J. Liu, Z. Xie, Y. Xia, Nano Lett 16, 1467 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work is supported by NRF and South African Institute for Advanced Materials Chemistry, University of the Western Cape, Cape Town, South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Narayanamoorthy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narayanamoorthy, B., Linkov, V., Sita, C. et al. Pt3M (M: Co, Ni and Fe) Bimetallic Alloy Nanoclusters as Support-Free Electrocatalysts with Improved Activity and Durability for Dioxygen Reduction in PEM Fuel Cells. Electrocatalysis 7, 400–410 (2016). https://doi.org/10.1007/s12678-016-0318-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-016-0318-x

Keywords

Navigation