Skip to main content
Log in

Temperature-Dependent Dissolution of Polycrystalline Platinum in Sulfuric Acid Electrolyte

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Commercial proton exchange membrane (PEM) fuel cells, various types of water electrolyzers and recently proposed unified, regenerative fuel cells are usually operated at elevated temperatures. Higher-operation temperatures bring several advantages: (a) increase of the rate of slow oxygen reactions, (b) improved mass transport, and (c) minimization of the electrolyte (ionic conductor) resistance. However, at the same time, it is expected that degradation processes will be accelerated at such temperatures. In the current work, electrochemistry and in situ mass spectrometry are utilized to investigate how increased temperature affects the rate of (electro)chemical dissolution of platinum. The steady state dissolution rate during potentiostatic polarization decreases to a value below the detection limit after several minutes at all temperatures—dissolution thus remains a transient process controlled by oxide formation kinetics as reported previously for room temperature. Deconvolution of anodic and cathodic dissolution branches in potentiodynamic experiments reveals that the increase in temperature results in higher amounts of platinum being dissolved during oxide formation, while dissolution during oxide reduction decays with increasing temperature. In contrast to most literature reports, the total amount of dissolved platinum during 1 potential cycle is found to decrease with increasing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J. Pettersson, B. Ramsey, D. Harrison, J. Power, Sources 157, 28–34 (2006)

    Article  CAS  Google Scholar 

  2. G. Chen, D.A. Delafuente, S. Sarangapani, T.E. Mallouk, Catal Today 67, 341–355 (2001)

    Article  CAS  Google Scholar 

  3. I. Katsounaros, S. Cherevko, A.R. Zeradjanin, K.J.J. Mayrhofer, Angew Chem Int Ed 53, 102–121 (2014)

    Article  CAS  Google Scholar 

  4. A. Rabis, P. Rodriguez, T.J. Schmidt, ACS Catal 2, 864–890 (2012)

    Article  CAS  Google Scholar 

  5. J.C. Meier, C. Galeano, I. Katsounaros, A.A. Topalov, A. Kostka, F. Schüth, K.J.J. Mayrhofer, ACS Catal 2, 832–843 (2012)

    Article  CAS  Google Scholar 

  6. F. Nikkuni, E. Ticianelli, L. Dubau, M. Chatenet, Electrocatalysis 4, 104–116 (2013)

    Article  CAS  Google Scholar 

  7. A.A. Topalov, I. Katsounaros, M. Auinger, S. Cherevko, J.C. Meier, S.O. Klemm, K.J.J. Mayrhofer, Angew Chem Int Ed 51, 12613–12615 (2012)

    Article  CAS  Google Scholar 

  8. S. Cherevko, A.A. Topalov, I. Katsounaros, K.J.J. Mayrhofer, Electrochem Commun 28, 44–46 (2013)

    Article  CAS  Google Scholar 

  9. S. Cherevko, A.A. Topalov, A.A. Zeradjanin, I. Katsounaros, K.J.J. Mayrhofer, RSC Adv 3, 16516–16527 (2013)

    Article  CAS  Google Scholar 

  10. K. Müller, J Res Inst Catal, Hokkaido University 17, 54 (1969)

    Google Scholar 

  11. B.W. Erschler, Doklady. Akad. Nauk. SSSR 37, 258 (1942)

    Google Scholar 

  12. B.W. Erschler, Doklady. Akad. Nauk. SSSR 37, 262 (1942)

    Google Scholar 

  13. K.J. Vetter, D. Berndt, Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie 62, 378–386 (1958)

    Google Scholar 

  14. A.N. Chemodanov, Y.M. Kolotyrkin, M.A. Demrovskii, T.V. Kudryavina, Doklady. Akad. Nauk. SSSR 171, 1384 (1966)

    Google Scholar 

  15. D.C. Johnson, D.T. Napp, S. Bruckenstein, Electrochim Acta 15, 1493–1509 (1970)

    Article  CAS  Google Scholar 

  16. D.A.J. Rand, R. Woods, J Electroanal Chem 35, 209–218 (1972)

    Article  CAS  Google Scholar 

  17. Y.M. Kolotyrkin, Electrochim Acta 18, 593–606 (1973)

    Article  CAS  Google Scholar 

  18. V.S. Bagotzky, E.I. Khrushcheva, M.R. Tarasevich, N.A. Shumilova, J. Power, Sources 8, 301–309 (1982)

    Article  Google Scholar 

  19. Y.M. Kolotyrkin, V.V. Losev, A.N. Chemodanov, Mater Chem Phys 19, 1–95 (1988)

    Article  CAS  Google Scholar 

  20. A.N. Chemodanov, I.M. July, Zashita metallov (Protection of metals) 27, 658–666 (1991)

    CAS  Google Scholar 

  21. V. Komanicky, K.C. Chang, A. Menzel, N.M. Markovic, H. You, X. Wang, D. Myers, J Electrochem Soc 153, B446–B451 (2006)

    Article  CAS  Google Scholar 

  22. A.P. Yadav, A. Nishikata, T. Tsuru, J Electrochem Soc 156, C253–C258 (2009)

    Article  CAS  Google Scholar 

  23. B.R. Shrestha, A.P. Yadav, A. Nishikata, T. Tsuru, Electrochim Acta 56, 9714–9720 (2011)

    Article  CAS  Google Scholar 

  24. A.P. Yadav, T. Okayasu, Y. Sugawara, A. Nishikata, T. Tsuru, J Electrochem Soc 159, C190–C194 (2012)

    Article  CAS  Google Scholar 

  25. Y. Sugawara, T. Okayasu, A.P. Yadav, A. Nishikata, T. Tsuru, J Electrochem Soc 159, F779–F786 (2012)

    Article  CAS  Google Scholar 

  26. L. Xing, G. Jerkiewicz, D. Beauchemin, Anal Chim Acta 785, 16–21 (2013)

    Article  CAS  Google Scholar 

  27. L. Xing, M.A. Hossain, M. Tian, D. Beauchemin, K. Adjemian, G. Jerkiewicz, Electrocatalysis 5, 96–112 (2014)

  28. A.A. Topalov, S. Cherevko, A. Zeradjanin, J. Meier, I. Katsounaros, K.J.J. Mayrhofer, Chem Sci 5, 631–638 (2014)

    Article  CAS  Google Scholar 

  29. W. Bi, T.F. Fuller, J Electrochem Soc 155, B215–B221 (2008)

    Article  CAS  Google Scholar 

  30. V.A.T. Dam, K. Jayasayee, F.A. de Bruijn, Fuel Cells 9, 453–462 (2009)

    Article  CAS  Google Scholar 

  31. W. Bi, T. Fuller, ECS Trans 11, 1235–1246 (2007)

    Article  CAS  Google Scholar 

  32. G. Inzelt, B. Berkes, Á. Kriston, Electrochim Acta 55, 4742–4749 (2010)

    Article  CAS  Google Scholar 

  33. V.A.T. Dam, F.A. de Bruijn, J Electrochem Soc 154, B494–B499 (2007)

    Article  CAS  Google Scholar 

  34. H. Tang, Z. Qi, M. Ramani, J.F. Elter, J. Power, Sources 158, 1306–1312 (2006)

    Article  CAS  Google Scholar 

  35. C.A. Reiser, L. Bregoli, T.W. Patterson, J.S. Yi, J.D. Yang, M.L. Perry, T.D. Jarvi, Electrochem Solid-State Lett 8, A273–A276 (2005)

    Article  CAS  Google Scholar 

  36. R. Atanasoski, L. Atanasoska, D. Cullen, G. Haugen, K. More, G. Vernstrom, Electrocatalysis 3, 284–297 (2012)

    Article  CAS  Google Scholar 

  37. K.-I. Ota, S. Nishigori, N. Kamiya, J Electroanal Chem 257, 205–215 (1988)

    Article  CAS  Google Scholar 

  38. T. Ioroi, N. Kitazawa, K. Yasuda, Y. Yamamoto, H. Takenaka, J Electrochem Soc 147, 2018–2022 (2000)

    Article  CAS  Google Scholar 

  39. L.L. Swette, A.B. LaConti, S.A. McCatty, J. Power, Sources 47, 343–351 (1994)

    Article  CAS  Google Scholar 

  40. H. Dhar, J Appl Electrochem 23, 32–37 (1993)

    Article  CAS  Google Scholar 

  41. S.-Y. Huang, P. Ganesan, H.-Y. Jung, B.N. Popov, J. Power, Sources 198, 23–29 (2012)

    Article  CAS  Google Scholar 

  42. S.O. Klemm, A.A. Topalov, C.A. Laska, K.J.J. Mayrhofer, Electrochem Commun 13, 1533–1535 (2011)

    Article  CAS  Google Scholar 

  43. J.A. Dean, N.A. Lange, Handbook of chemistry (McGraw-Hill, New York, 1999)

    Google Scholar 

  44. H.E. Darling, J Chem Eng Data 9, 421–426 (1964)

    Article  CAS  Google Scholar 

  45. O. Diaz-Morales, F. Calle-Vallejo, C. de Munck, M.T.M. Koper, Chem Sci 4, 2334–2343 (2013)

    Article  CAS  Google Scholar 

  46. J. Willsau, O. Wolter, J. Heitbaum, J Electroanal Chem 195, 299–306 (1985)

    Article  CAS  Google Scholar 

  47. L. Dubau, L. Castanheira, G. Berthomé, F. Maillard, Electrochim Acta 110, 273–281 (2013)

    Article  CAS  Google Scholar 

  48. A. Kongkanand, J.M. Ziegelbauer, J. Phys, Chem. C 116, 3684–3693 (2012)

    CAS  Google Scholar 

  49. J.A. Gilbert, N.N. Kariuki, R. Subbaraman, A.J. Kropf, M.C. Smith, E.F. Holby, D. Morgan, D.J. Myers, J Am Chem Soc 134, 14823–14833 (2012)

    Article  CAS  Google Scholar 

  50. M. Matsumoto, T. Miyazaki, H. Imai, J. Phys, Chem. C 115, 11163–11169 (2011)

    CAS  Google Scholar 

  51. K.J. Vetter, J.W. Schultze, J Electroanal Chem 34, 131–139 (1972)

    Article  CAS  Google Scholar 

  52. K.J. Vetter, J.W. Schultze, J Electroanal Chem 34, 141–158 (1972)

    Article  CAS  Google Scholar 

  53. J.A. Keith, G. Jerkiewicz, T. Jacob, ChemPhysChem 11, 2779–2794 (2010)

    Article  CAS  Google Scholar 

  54. G. Jerkiewicz, G. Vatankhah, J. Lessard, M.P. Soriaga, Y.-S. Park, Electrochim Acta 49, 1451–1459 (2004)

    CAS  Google Scholar 

  55. A.K.N. Reddy, M.A. Genshaw, J.O.M. Bockris, J Chem Phys 48, 671–675 (1968)

    Article  CAS  Google Scholar 

  56. M.A.H. Lanyon, B.M.W. Trapnell, Proceedings of the Royal Society of London, Series A. Math Phys Sci 227, 387–399 (1955)

    Article  CAS  Google Scholar 

  57. M. Alsabet, M. Grden, G. Jerkiewicz, J Electroanal Chem 589, 120–127 (2006)

    Article  CAS  Google Scholar 

  58. G. Jerkiewicz, M. Alsabet, M. Grden, H. Varela, G. Tremiliosi-Filho, J Electroanal Chem 625, 172–174 (2009)

    Article  CAS  Google Scholar 

  59. B.E. Conway, B. Barnett, H. Angerstein-Kozlowska, B.V. Tilak, J Chem Phys 93, 8361–8373 (1990)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the BMBF (Kz: 033RC1101A) for financial support and Andrea Mingers for experimental assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Serhiy Cherevko or Karl J. J. Mayrhofer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cherevko, S., Topalov, A.A., Zeradjanin, A.R. et al. Temperature-Dependent Dissolution of Polycrystalline Platinum in Sulfuric Acid Electrolyte. Electrocatalysis 5, 235–240 (2014). https://doi.org/10.1007/s12678-014-0187-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-014-0187-0

Keywords

Navigation