Skip to main content
Log in

Size Effects in Monolayer Catalysis—Model Study: Pt Submonolayers on Au(111)

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The two-dimensional Pt submonolayers on Au(111) were used as model catalyst system to study kinetics of hydrogen oxidation reaction (HOR). The morphology of different Pt submonolayers was characterized by ex situ scanning tunneling microscopy combined with statistical image analysis. The HOR kinetics data were analyzed using Levich–Koutecky formalism and presented as a function of the mean size of Pt clusters for each Pt submonolayer. The Pt submonolayers with smaller Pt clusters were found less active for HOR. This trend is well correlated with the continuum elasticity analysis of the average active strain in Pt clusters indicating that smaller clusters have less tensile strain. The density functional theory calculations were found in agreement with our results demonstrating that the size-dependent strain in Pt clusters has significant effect on the energy of the d-band center, i.e., the Pt clusters’ activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.S. Edelstein, R.C. Cammarata (eds.), Nanomaterials: synthesis, properties and applications (IOP Publishing, Bristol, 1996)

    Google Scholar 

  2. G. Cao, Nanostructures and nanomaterials: synthesis, properties and applications (Imperial College Press, London, 2004)

    Book  Google Scholar 

  3. R. Adzic, J. Zhung, K. Sasaki, M.B. Vukmirovic, M. Shao, J.X. Wang, A.U. Nilekar, M. Mavrikakis, J.A. Valerio, F. Uribe, Top Catal 46, 249 (2007)

    Article  CAS  Google Scholar 

  4. K. Sasaki, J.X. Wang, H. Naohara, N. Marinkovic, K. More, H. Inada, R.R. Adzic, Electrochim Acta 55, 2645 (2010)

    Article  CAS  Google Scholar 

  5. P.A. Dowben, Surf Sci Rep 40, 161 (2000)

    Article  Google Scholar 

  6. J. Greeley, J.K. Nørskov, M. Mavrikakis, Annu Rev Phys Chem 53, 319 (2002)

    Article  CAS  Google Scholar 

  7. M. Mavrakakis, B. Hammar, J.K. Nørskov, Phys Rev Lett 81, 2819 (1998)

    Article  Google Scholar 

  8. A. Schlapka, M. Liseihka, A. Gross, U. Kasberger, P. Jakob, Phys Rev Lett 91, 016101 (2003)

    Article  CAS  Google Scholar 

  9. E. Kamshoff, E. Hahn, K. Kern, Phys Rev Lett 73, 704 (1994)

    Article  Google Scholar 

  10. M.Ø. Pedersen, S. Helveg, A. Ruban, I. Stensgaard, E. Læsgaard, J.K. Nørskovand, F. Besenbacher, Surf Sci 426, 395 (1999)

    Article  CAS  Google Scholar 

  11. M. Mavrikakis, P. Stoltze, J.K. Nørskov, Catal Lett 64, 101 (2000)

    Article  CAS  Google Scholar 

  12. P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M.F. Toney, A. Nilson, Nat Chem 2, 454 (2010)

    Article  CAS  Google Scholar 

  13. J. Znahg, M.B. Vukmirovic, Y. Xu, M. Marvikakis, R.R. Adzic, Angew Chem Int Ed 44, 2132 (2005)

    Article  Google Scholar 

  14. L.A. Kibler, A.M. El-Aziz, R. Hoyer, D.M. Kolb, Angew Chem Int Ed 44, 2080 (2005)

    Article  CAS  Google Scholar 

  15. J. Greeley, J.K. Norskov, L.A. Kibler, A.M. El-Aziz, D.M. Kolb, Chemphyschem 7, 1032 (2006)

    Article  CAS  Google Scholar 

  16. H.-F. Waibel, M. Kleinert, L.A. Kibler, D.M. Kolb, Electrochim Acta 47, 1461 (2002)

    Article  CAS  Google Scholar 

  17. S.R. Brankovic, J. McBreen, R.R. Adzic, J Electroanal Chem 503, 99 (2001)

    Article  CAS  Google Scholar 

  18. J. Zhang, F.H.B. Lima, M.H. Shao, K. Sasaki, J.X. Wang, J. Hanson, R.R. Adzic, J Phys Chem B 109, 22701 (2005)

    Article  CAS  Google Scholar 

  19. Y.D. Jin, Y. Shen, S.J. Dong, J Phys Chem B 108, 8142 (2004)

    Article  CAS  Google Scholar 

  20. K. Sasaki, Y. Mo, J.X. Wang, M. Balasubramanian, F. Uribe, J. McBreen, R.R. Adzic, Electrochim Acta 48, 3841 (2003)

    Article  CAS  Google Scholar 

  21. R. Kern, P. Muller, Surf Sci 392, 103 (1997)

    Article  CAS  Google Scholar 

  22. S.R. Brankovic, N. Dimitrov, K. Sieradzki, Electrochem Solid State Lett 2, 443 (1999)

    Article  CAS  Google Scholar 

  23. S.R. Brankovic, J.X. Wang, R.R. Adzic, Surf Sci 474, L173 (2001)

    Article  CAS  Google Scholar 

  24. D. Gokcen, S.-E. Bae, S.R. Brankovic, Electrochim Acta 56, 5545 (2011)

    Article  CAS  Google Scholar 

  25. D. Gokcen, S.-E. Bae, S.R. Brankovic, J Electrochem Soc 157, D582 (2010)

    Article  CAS  Google Scholar 

  26. N. Otsu, IEEE Trans Syst Man Cyber. SMC-9, 62 (1979)

  27. D. Gokcen, S.E. Bae, S.R. Brankovic, Electrochem Solid State Lett (in press). Submitted (results available in supporting material) (2011)

  28. A.J. Bard, L.R. Faulkner, Electrochemical methods (Wiley, New York, 1980)

    Google Scholar 

  29. N.M. Markovic, B.N. Grgur, P.N. Ross, J Phys Chem B 101, 5405 (1997)

    Article  CAS  Google Scholar 

  30. R.C. Cammarata, Surf Sci 279, 341 (1992), see also R.C. Cammarata, K. Sieradzki, Annu Rev Mater Sci 24, 215 (1994)

  31. M.C. Payne, D.C. Allan, T. Arias, J.D. Johannopoulus, Rev Mod Phys 64, 1045 (1992)

    Article  CAS  Google Scholar 

  32. D. Vanderbilt, Phys Rev B 41, 7892 (1990)

    Article  Google Scholar 

  33. H.J. Monkhorst, J.D. Pack, Phys Rev B 13, 5186 (1976)

    Article  Google Scholar 

  34. B. Hammer, L.B. Hansen, J.K. Nørskov, Phys Rev B 59, 7413 (1999)

    Article  Google Scholar 

  35. K. Uosaki, S. Ye, H. Naohara, Y. Oda, T. Haba, T. Kondo, J Phys Chem B 101, 7566 (1997)

    Article  CAS  Google Scholar 

  36. P. Sharma, S. Ganti, N. Bhate, Appl Phys Lett 82, 535 (2003)

    Article  CAS  Google Scholar 

  37. J.H. Wassermann, J.S. Vermaak, Surf Sci 22, 164 (1970)

    Article  Google Scholar 

  38. H. Zhang, R.L. Penn, R.J. Hamers, J.F. Banfield, J Phys Chem B 103, 4656 (1999)

    Article  CAS  Google Scholar 

  39. J.X. Wang, T.E. Springer, R.R. Adzic, J Electrochem Soc 153, A1732 (2006)

    Article  CAS  Google Scholar 

  40. J.X. Wang, T.E. Springer, P. Liu, M. Shao, R.R. Adzic, J Phys Chem C 111, 12425 (2007)

    Article  CAS  Google Scholar 

  41. L. Grabow, Y. Xu, M. Mavrikakis, Phys Chem Chem Phys 8, 3369 (2006)

    Article  CAS  Google Scholar 

  42. B. Hammer, J.K. Nørskov, Adv Catal 45, 71 (2000)

    Article  CAS  Google Scholar 

  43. P. Liu, J.A. Rodriguez, Y. Takahashi, K. Nakamura, J Catal 262, 294 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Prof. P. Sharma from University of Houston for the useful discussions regarding strain calculations. DFT calculations are carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. This material is based upon the work supported by the National Science Foundation under the contract CHE-0955922.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanko R. Brankovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bae, SE., Gokcen, D., Liu, P. et al. Size Effects in Monolayer Catalysis—Model Study: Pt Submonolayers on Au(111). Electrocatalysis 3, 203–210 (2012). https://doi.org/10.1007/s12678-012-0082-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-012-0082-5

Keywords

Navigation