Skip to main content
Log in

Electrochemical Atomic Layer Deposition (E-ALD) of Palladium Nanofilms by Surface Limited Redox Replacement (SLRR), with EDTA Complexation

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Atomic-scale control in the formation of Pd thin films is being developed using electrochemical atomic layer deposition (E-ALD) via surface limited redox replacement (SLRR). Pd has unique hydrogen storage properties. To study hydrogen storage capacity, hydrogen charging and discharging kinetics and its catalytic properties at the nanoscale will require films with well-defined thickness and structure. SLRR is the use of underpotential deposition (UPD) to form a sacrificial atomic layer of a less noble metal, such as Cu or Pb, and to exchange it at open circuit potential (OCP) for a more noble metal (Pd) via galvanic displacement. The deposits were grown using an automated electrochemical flow cell system which allowed sequential variation of solutions and potentials. Electron probe microanalysis (EPMA) revealed excess growth at the flow cell ingress, suggesting that the SLRR mechanism involved electron transfer from substrate to Pd2+ ions, rather than direct electron exchange from sacrificial metal atom(s) to Pd2+ ions. Ethylenediaminetetraacetic acid (EDTA) was used to slow the galvanic displacement by complexing the Pd2+, in an attempt to form more uniform Pd deposits. The resulting films were more homogeneous and displayed the expected Pd voltammetry in H2SO4. The charge for UPD remained constant from cycle to cycle, indicating no roughening of the surface. Ways of optimizing complexing agent properties, as well as the flow cell design and deposition parameters are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J.C. Barton, W.F.N. Leitch, F.A. Lewis, Trans. Faraday Soc. 59(485), 1208 (1963)

    Article  CAS  Google Scholar 

  2. M. Schwartz, Encyclopedia and Handbook of Materials, Parts and Finishes, 2nd edn. (CRC Press, New York, 2002)

    Book  Google Scholar 

  3. C.A. Harper, Electronic packaging and interconnection handbook, 4th edn. (McGraw-Hill 2005)

  4. J.I. Avila, R.J. Matelon, R. Trabol, M. Favre, D. Lederman, U.G. Volkmann, A.L. Cabrera, J. Appl. Phys. 107(2) (2010). doi:2

  5. T.J. Richardson, J.L. Slack, B. Farangis, M.D. Rubin, Appl. Phys. Lett. 80(8), 1349–1351 (2002)

    Google Scholar 

  6. J.T. Zhang, C.C. Qiu, H.Y. Ma, X.Y. Liu, J. Phys. Chem. C 112(36), 13970–13975 (2008)

    Article  CAS  Google Scholar 

  7. M.M.O. Thotiyl, T.R. Kumar, S. Sampath, J. Phys. Chem. C 114(41), 17934–17941 (2010)

    Article  CAS  Google Scholar 

  8. A. Sarapuu, A. Kasikov, N. Wong, C.A. Lucas, G. Sedghi, R.J. Nichols, K. Tammeveski, Electrochim. Acta 55(22), 6768–6774 (2010)

    Article  CAS  Google Scholar 

  9. J.S. Noh, J.M. Lee, W. Lee, Sensors-Basel 11(1), 825–851 (2011)

    Article  CAS  Google Scholar 

  10. M. Eyrich, S. Kielbassa, T. Diemant, J. Biskupek, U. Kaiser, U. Wiedwald, P. Ziemann, J. Bansmann, Chem. Phys. Chem. 11(7), 1430–1437 (2010)

    Article  CAS  Google Scholar 

  11. G.R. Gu, T. Ito, Appl. Surf. Sci. 257(7), 2455–2460 (2011)

    Article  CAS  Google Scholar 

  12. M. Samuelsson, D. Lundin, J. Jensen, M.A. Raadu, J.T. Gudmundsson, U. Helmersson, Surf. Coat. Technol. 205(2), 591–596 (2010)

    Article  CAS  Google Scholar 

  13. M. Baldauf, D.M. Kolb, Electrochim. Acta 38(15), 2145–2153 (1993)

    Article  CAS  Google Scholar 

  14. M. Takahasi, K. Tamura, J. Mizuki, T. Kondo, K. Uosaki, J. Phys. Condens. Matter 22(47) (2010)

  15. A. Czerwinski, S. Zamponi, R. Marassi, J. Electroanal. Chem. 304(1–2), 233–239 (1991)

    CAS  Google Scholar 

  16. O.M. Magnussen, Chem. Rev. 102(3), 679–725 (2002)

    Article  CAS  Google Scholar 

  17. E. Herrero, L.J. Buller, H.D. Abruna, Chem. Rev. 101, 1897–1930 (2001)

    Article  CAS  Google Scholar 

  18. A.A. Gewirth, B.K. Niece, Chem. Rev. 97, 1129–1162 (1997)

    Article  CAS  Google Scholar 

  19. R.R. Adzic, in Advances in Electrochemistry and Electrochemical Engineering, ed. by H. Gerishcher, C.W. Tobias, vol. 13 (Wiley-Interscience, New York, 1984), p. 159

    Google Scholar 

  20. D.M. Kolb, in Advances in Electrochemistry and Electrochemical Engineering, ed. by H. Gerischer, C.W. Tobias, vol. 11 (John Wiley, New York, 1978), p. 125

    Google Scholar 

  21. S.M. George, Chem. Rev. 110(1), 111–131 (2010)

    Article  CAS  Google Scholar 

  22. J.L. Stickney, in Advances in Electrochemical Science and Engineering, ed. by C. Richard, Alkire, D.M. Kolb, vol. 7 (Wiley-VCH, Weinheim, 2002)

    Google Scholar 

  23. M. Cavallini, M. Facchini, C. Albonetti, F. Biscarini, M. Innocenti, F. Loglio, E. Salvietti, G. Pezzatini, M.L. Foresti, J. Phys. Chem. C 111(3), 1061–1064 (2007)

    Article  CAS  Google Scholar 

  24. S.R. Brankovic, J.X. Wang, R.R. Adzic, Surf. Sci. 474(1–3), L173–L179 (2001)

    Article  CAS  Google Scholar 

  25. M.F. Mrozek, Y. Xie, M.J. Weaver, Anal. Chem. 73(24), 5953–5960 (2001)

    Article  CAS  Google Scholar 

  26. R. Vasilic, N. Dimitrov, Electrochem. Solid St. 8(11), C173–C176 (2005)

    Article  CAS  Google Scholar 

  27. Y.G. Kim, J.Y. Kim, D. Vairavapandian, J.L. Stickney, J. Phys, Chem. B 110(36), 17998–18006 (2006)

    Article  CAS  Google Scholar 

  28. C. Thambidurai, D.K. Gebregziabiher, X.H. Liang, Q.H. Zhang, V. Ivanova, P.H. Haumesser, J.L. Stickney, J. Electrochem. Soc. 157(8), D466–D471 (2010)

    Article  CAS  Google Scholar 

  29. C. Thambidurai, Y.G. Kim, N. Jayaraju, V. Venkatasamy, J.L. Stickney, J. Electrochem. Soc. 156(8), D261–D268 (2009)

    Article  CAS  Google Scholar 

  30. C. Thambidurai, Y.G. Kim, J.L. Stickney, Electrochim. Acta 53(21), 6157–6164 (2008)

    Article  CAS  Google Scholar 

  31. D.K. Gebregziabiher, Y.G. Kim, C. Thambidurai, V. Ivanova, P.H. Haumesser, J.L. Stickney, J. Cryst. Growth 312(8), 1271–1276 (2010)

    Article  CAS  Google Scholar 

  32. N. Jayaraju, Electrochemical atomic layer deposition (E-ALD) of Pt and PtRu nanofilms. Ph.D. Dissertation, University of Georgia, Athens, GA, 2010.

  33. M. Fayette, Y. Liu, D. Bertrand, J. Nutariya, N. Vasiljevic, N. Dimitrov, Langmuir 27(9), 5650–5658 (2011)

    Article  CAS  Google Scholar 

  34. T.S. Mkwizu, M.K. Mathe, I. Cukrowski, Langmuir 26(1), 570–580 (2010)

    Article  CAS  Google Scholar 

  35. D. Gokcen, S.E. Bae, S.R. Brankovic, J. Electrochem. Soc. 157(11), D582–D587 (2010)

    Article  CAS  Google Scholar 

  36. D. Gokcen, S.E. Bae, S.R. Brankovic, Electrochim. Acta 56(16), 5545–5553 (2011)

    Article  CAS  Google Scholar 

  37. O. Ghodbane, L. Roue, D. Belanger, Chem. Mater. 20(10), 3495–3504 (2008)

    Article  CAS  Google Scholar 

  38. T.L. Wade, T.A. Sorenson, J.L. Stickney, Interfacial Electrochemistry (Marcel Dekker, New York, 1999)

  39. J.L. Stickney, in Electroanal Chem, ed. by A.J. Bard, I. Rubinstein, vol. 21 (Marcel Dekker, Inc, New York, 1999), pp. 75–209

    Google Scholar 

  40. J. Sanabria-Chinchilla, J.H. Baricuatro, M.P. Soriaga, F. Hernandez, H. Baltruschat, J. Colloid Interf. Sci. 314(1), 152–159 (2007)

    Article  CAS  Google Scholar 

  41. R. Adzic, E. Yeager, B.D. Cahan, J. Electrochem. Soc. 121(4), 474–484 (1974)

    Article  CAS  Google Scholar 

  42. C.H. Chen, N. Washburn, A.A. Gewirth, J Phys. Chem-Us 97(38), 9754–9760 (1993)

    Article  CAS  Google Scholar 

  43. K. Engelsmann, W.J. Lorenz, E. Schmidt, J. Electroanal. Chem. 114(1), 11–24 (1980)

    Article  CAS  Google Scholar 

  44. A. Hamelin, A. Katayama, G. Picq, P. Vennereau, J. Electroanal. Chem. 113(2), 293–300 (1980)

    Article  CAS  Google Scholar 

  45. D.O. Banga, R. Vaidyanathan, X.H. Liang, J.L. Stickney, S. Cox, U. Happeck, Electrochim. Acta 53(23), 6988–6994 (2008)

    Article  CAS  Google Scholar 

  46. J.Y. Kim, Y.G. Kim, J.L. Stickney, J. Electroanal. Chem. 621(2), 205–213 (2008)

    Article  CAS  Google Scholar 

  47. M.P. Green, K.J. Hanson, Surf. Sci. 259(3), L743–L749 (1991)

    Article  CAS  Google Scholar 

  48. E. Herrero, L.J. Buller, H.D. Abruna, Chem. Rev. 101(7), 1897–1930 (2001)

    Article  CAS  Google Scholar 

  49. R.J. Randler, D.M. Kolb, B.M. Ocko, I.K. Robinson, Surf. Sci. 447(1–3), 187–200 (2000)

    Article  CAS  Google Scholar 

  50. J. Hotlos, O.M. Magnussen, R.J. Behm, Surf. Sci. 335(1–3), 129–144 (1995)

    Article  CAS  Google Scholar 

  51. G.H. Laurie, J.N. Pratt, Trans. Faraday Soc. 60, 1391 (1964)

    Article  CAS  Google Scholar 

  52. F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, A.K. Niessen, Cohesion in Metals: Transition Metal Alloys (Elsevier Science Publishers B.V, Amsterdam, 1988)

    Google Scholar 

  53. R. Lbibb, A. Chouiyakh, R. Castanet, Intermetallics 4(8), 589–592 (1996)

    Article  CAS  Google Scholar 

  54. W.M. Macnevin, O.H. Kriege, Anal. Chem. 26(11), 1768–1770 (1954)

    Article  CAS  Google Scholar 

  55. J. Kragten, Talanta 25(4), 239–240 (1978)

    Article  CAS  Google Scholar 

  56. I.P. Alimarin, V.I. Shlenskaya, Pure Appl. Chem. 21(4), 461–478 (1970)

    Google Scholar 

  57. C. Gabrielli, P.P. Grand, A. Lasia, H. Perrot, J. Electrochem. Soc. 151(11), A1937–A1942 (2004)

    Article  CAS  Google Scholar 

  58. P.N. Bartlett, B. Gollas, S. Guerin, J. Marwan, Phys. Chem. Chem. Phys. 4(15), 3835–3842 (2002)

    Article  CAS  Google Scholar 

  59. N. Tateishi, K. Yahikozawa, K. Nishimura, M. Suzuki, Y. Iwanaga, M. Watanabe, E. Enami, Y. Matsuda, Y. Takasu, Electrochim. Acta 36(7), 1235–1240 (1991)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Acknowledgment is made of the support of the National Science Foundation, Division of Materials Science, as well as Sandia National Laboratories, a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L. Stickney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheridan, L.B., Czerwiniski, J., Jayaraju, N. et al. Electrochemical Atomic Layer Deposition (E-ALD) of Palladium Nanofilms by Surface Limited Redox Replacement (SLRR), with EDTA Complexation. Electrocatalysis 3, 96–107 (2012). https://doi.org/10.1007/s12678-012-0080-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-012-0080-7

Keywords

Navigation