Skip to main content
Log in

Biosynthesis of Silver Nanoparticles by Methylophilus quaylei, Characterization and Its Impact on Established Biofilms

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

In this study, Methylophilus quaylei proved to possess the ability to reduce AgNO3 and produce silver nanoparticles (AgNPs) under specific conditions via bacterial cells and cell-free supernatant (CFS). The obtained AgNPs via bacterial cells were examined by the transmission of electron microscopy (TEM) consistent with X-ray microanalysis and for AgNPs via CFS by visible (UV–Vis) absorption spectroscopy, scanning electron microscopy (SEM), and dynamic light scattering (DLS). The purpose of this study was to evaluate the antibiofilm effect of AgNPs. The effectiveness of the minimum inhibitory concentration (MIC) of AgNPs in supplementation with CFS was determined on established biofilms on polypropylene by the number of colony forming unit (CFU). These nanoparticles exhibit an antibiofilm effect. CFS was tested individually and in supplementation with the MIC AgNPs obtained on established biofilms of M. quaylei MT and M. quaylei SM. The CFS individually decreased established biofilm for both strains. Further, the obtained MIC of AgNPs in combination with CFS exhibited significant antibiofilm effect against established biofilms for both strains by the destruction of biofilm architecture and detecting cell morphological abnormalities that were observed by SEM. These results showed that the obtained AgNPs had a strong antibiofilm effect against the examined strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Egorova, E. M., Kubatiev, A. A., & Schvets, V. I. (2016). Biological effects of metal nanoparticles. Cham: Springer.

    Google Scholar 

  2. Kulkarni, N., & Muddapur, U. (2014). Biosynthesis of metal nanoparticles: a review. Journal of Nanotechnology, 2014.

  3. Singh, O. V. (Ed.). (2015). Bio-nanoparticles: biosynthesis and sustainable biotechnological implications (1st ed.). Wiley.

  4. Thota, S., & Crans, D. C. (Eds.). (2018). Metal nanoparticles: synthesis and applications in pharmaceutical sciences. Wiley.

  5. Tolaymat, T. M., El Badawy, A. M., Genaidy, A., Scheckel, K. G., Luxton, T. P., & Suidan, M. (2010). An evidence-based environmental perspective of manufactured silver nanoparticles in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Science of the Total Environment, 408, 999–1006.

    Google Scholar 

  6. Tyupa, D. V., Alekseeva, L. S., Kalenov, S. V., & Kuznetsov, A. E. (2014). Search for the most active microbial producers of silver nanoparticles. Journal of Advanced chemistry and chemical technology, 28, 154.

    Google Scholar 

  7. Tran, Q. H., & Le, A. T. (2013). Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Advances in Natural Sciences: Nanoscience and Nanotechnology, 4, 033001.

    Google Scholar 

  8. Huh, A. J., & Kwon, Y. J. (2011). “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of Controlled Release, 156, 128–145.

    Google Scholar 

  9. Durán, N., Marcato, P. D., Durán, M., Yadav, A., Gade, A., & Rai, M. (2011). Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Applied Microbiology and Biotechnology, 90, 1609–1624.

    Google Scholar 

  10. Mandal, D., Bolander, M. E., Mukhopadhyay, D., Sarkar, G., & Mukherjee, P. (2006). The use of microorganisms for the formation of metal nanoparticles and their application. Applied Microbiology and Biotechnology, 69, 485–492.

    Google Scholar 

  11. Pereira, L., Mehboob, F., Stams, A. J., Mota, M. M., Rijnaarts, H. H., & Alves, M. M. (2015). Metallic nanoparticles: microbial synthesis and unique properties for biotechnological applications, bioavailability and biotransformation. Critical Reviews in Biotechnology, 35, 114–128.

    Google Scholar 

  12. Boroumand Moghaddam, A., Namvar, F., Moniri, M., Azizi, S., & Mohamad, R. (2015). Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules, 20, 1654016565.

    Google Scholar 

  13. Ghodake, G., & Lee, D. S. (2011). Biological synthesis of gold nanoparticles using the aqueous extract of the brown algae Laminaria japonica. Journal of Nanoelectronics and Optoelectronics, 6, 268–271.

    Google Scholar 

  14. Kuppusamy, P., Yusoff, M. M., Maniam, G. P., & Govindan, N. (2016). Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications - an updated report. Saudi Pharmaceutical Journal, 24, 473–484.

    Google Scholar 

  15. Klaus, T., Joerger, R., Olsson, E., & Granqvist, C. G. (1999). Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences of the United States of America, 96, 13611–13614.

    Google Scholar 

  16. Lloyd, J. R., Yong, P., & Macaskie, L. E. (1998). Enzymatic recovery of elemental palladium by using sulfate-reducing bacteria. Applied and Environmental Microbiology, 64, 4607–4609.

    Google Scholar 

  17. Narayanan, K. B., & Sakthivel, N. (2010). Biological synthesis of metal nanoparticles by microbes. Advances in Colloid and Interface Science, 156, 1–13.

    Google Scholar 

  18. Dauthal, P., & Mukhopadhyay, M. (2013). Biosynthesis of palladium nanoparticles using Delonix regia leaf extract and its catalytic activity for nitro-aromatics hydrogenation. Industrial and Engineering Chemistry Research, 52, 18131–18139.

    Google Scholar 

  19. Sheny, D. S., Philip, D., & Mathew, J. (2012). Rapid green synthesis of palladium nanoparticles using the dried leaf of Anacardium occidentale. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 91, 35–38.

    Google Scholar 

  20. Kanchana, A., Devarajan, S., & Ayyappan, S. R. (2010). Green synthesis and characterization of palladium nanoparticles and its conjugates from Solanum trilobatum leaf extract. Nano-Micro Letters, 2, 169–176.

    Google Scholar 

  21. Durán, M., Silveira, C. P., & Durán, N. (2015). Catalytic role of traditional enzymes for biosynthesis of biogenic metallic nanoparticles: a mini-review. IET Nanobiotechnology, 9, 314–323.

    Google Scholar 

  22. Anthony, C., & Williams, P. (2003). The structure and mechanism of methanol dehydrogenase. Biochimica et Biophysica Acta, Proteins and Proteomics, 1647, 18–23.

    Google Scholar 

  23. Anthony, C. (1982). The biochemistry of methylotrophs. London: Academic Press.

    Google Scholar 

  24. Trotsenko, Y. A., Doronina, N. V., & Khmelenina, V. N. (2005). Biotechnological potential of aerobic methylotrophic bacteria: a review of current state and future prospects. Applied Biochemistry and Microbiology, 41, 433–441.

    Google Scholar 

  25. Bankura, K. P., Maity, D., Mollick, M. M., Mondal, D., et al. (2012). Synthesis, characterization and antimicrobial activity of dextran stabilized silver nanoparticles in aqueous medium. Carbohydrate Polymers, 89, 1159–1165.

    Google Scholar 

  26. Sorokin, V. V., Pshenichnikova, A. B., Kalenov, S. V., Suyasov, N. A., & Skladnev, D. A. (2019). Comparison of the wild-type obligate methylotrophic bacterium Methylophilus quaylei and its isogenic streptomycin-resistant mutant via metal nanoparticle generation. Biological Trace Element Research, 1–10.

  27. Doronina, N., Ivanova, E., Trotsenko, Y., Pshenichnikova, A., Kalinina, E., & Shvets, V. (2005). Methylophilus quaylei Sp. nov., a new aerobic obligately methylotrophic bacterium. Systematic and Applied Microbiology, 28, 303–309.

    Google Scholar 

  28. Pshenichnikova, A. B., Gavrilova, E. S., & Shvets, V. I. (2011). Influence of physico-chemical properties of the gram-negative bacteria cell surface on the resistance to streptomycin. Vestnik MITHT, 6, 43–50.

    Google Scholar 

  29. Liu, X., Atwater, M., Wang, J., & Huo, Q. (2007). Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids and Surfaces, B: Biointerfaces, 58, 3–7.

    Google Scholar 

  30. Paramelle, D., Sadovoy, A., Gorelik, S., Free, P., Hobley, J., & Fernig, D. G. (2014). A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. Analyst, 139, 4855–4861.

    Google Scholar 

  31. Mohamed, A. M. H. A., Amzaeva, D. N., Pshenichnikova, A. B., & Shvets, V. I. (2018). Influence of polymyxin B on the formation of biofilms by bacterium Methylophilus quaylei on polypropylene and Teflon. Journal of Fine Chemical Technology, 13, 31–39.

    Google Scholar 

  32. Chen, X., & Schluesener, H. J. (2008). Nanosilver: a nanoproduct in medical application. Toxicology Letters, 176, 1–12.

    Google Scholar 

  33. Rai, M. K., Deshmukh, S. D., Ingle, A. P., & Gade, A. K. (2012). Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. Journal of Applied Microbiology, 112, 841–852.

    Google Scholar 

  34. Dos Santos, C. A., Seckler, M. M., Ingle, A. P., et al. (2014). Silver nanoparticles: therapeutical uses, toxicity, and safety issues. Journal of Pharmaceutical Sciences, 103, 1931–1944.

    Google Scholar 

  35. Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27, 7683.

    Google Scholar 

  36. Otman, S. A. M., Pshenichnikova, A. B., & Shvets, V. I. (2011). Exopolysaccharide of the obligate methylotrophic bacterium Methylophilus quaylei: production, purification and study of carbohydrate and fractional composition. Vestnik MITHT, 6, 84–87.

    Google Scholar 

  37. Xu, W., Jin, W., Lin, L., Zhang, C., Li, Z., Li, Y., Song, R., & Li, B. (2014). Green synthesis of xanthan conformation-based silver nanoparticles: antibacterial and catalytic application. Carbohydrate Polymers, 101, 961–967.

    Google Scholar 

  38. Kalimuthu, K., Babu, R. S., Venkataraman, D., Mohd, B., & Gurunathan, S. (2008). Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids and Surfaces, B: Biointerfaces, 65, 150–153.

    Google Scholar 

  39. Cabiscol, E., Tamarit, J., & Ros, J. (2000). Oxidative stress in bacteria and protein damage by reactive oxygen species. International Microbiology, 3, 3–8.

    Google Scholar 

  40. Ravindran, A., Chandran, P., & Khan, S. S. (2013). Biofunctionalized silver nanoparticles: advances and prospects. Colloids and Surfaces, B: Biointerfaces, 105, 342–352.

    Google Scholar 

  41. Kim, J. S., Kuk, E., Yu, K. N., Kim, J. H., et al. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine Nanotechnology, 3, 95–101.

    Google Scholar 

  42. Zhao, A., Zhu, J., Ye, X., Ge, Y., & Li, J. (2016). Inhibition of biofilm development and spoilage potential of Shewanella baltica by quorum sensing signal in cell-free supernatant from Pseudomonas fluorescens. International Journal of Food Microbiology, 230, 73–80.

    Google Scholar 

  43. Amel, A. M., Farida, B., & Djamila, S. (2015). Anti-adherence potential of Enterococcus durans cells and its cell-free supernatant on plastic and stainless steel against foodborne pathogens. Folia Microbiologia (Praha), 60, 357–363.

    Google Scholar 

  44. Terekhova, E. A., Stepicheva, N. A., Pshenichnikova, A. B., & Shvets, V. I. (2010). Stearic acid methyl ester: a new extracellular metabolite of the obligate methylotrophic bacterium Methylophilus quaylei. Applied Biochemistry and Microbiology, 46, 166–172.

    Google Scholar 

  45. Liaw, S. J., Lai, H. C., & Wang, W. B. (2004). Modulation of swarming and virulence by fatty acids through the RsbA protein in Proteus mirabilis. Infection and Immunity, 72, 6836–6845.

    Google Scholar 

  46. Agoramoorthy, G., Chandrasekaran, M., Venkatesalu, V., & Hsu, M. J. (2007). Antibacterial and antifungal activities of fatty acid methyl esters of the blind-your-eye mangrove from India. Brazilian Journal of Microbiology, 38, 739–742.

    Google Scholar 

  47. Wu, Z., Ye, C., Guo, F., Zhang, S., & Yu, X. (2013). Evidence for broad-spectrum biofilm inhibition by the bacterium Bacillus sp. strain SW9. Applied and Environmental Microbiology, 79, 1735–1738.

    Google Scholar 

  48. Frickmann, H., Klenk, C., Warnke, P., Redanz, S., & Podbielski, A. (2018). Influence of probiotic culture supernatants on in vitro biofilm formation of staphylococci. European Journal of Microbiology and Immunology, 8, 119–127.

    Google Scholar 

  49. Otman, S. A. M., Pshenichnikova, A. B., & Shvets, V. I. (2012). Effect of exogenous fatty acids on the growth and production of exopolysaccharides of obligately methylotrophic bacterium Methylophilus quaylei. Applied Biochemistry and Microbiology, 48, 200–205.

    Google Scholar 

  50. Wang, J., Zhao, X., Yang, Y., Zhao, A., & Yang, Z. (2015). Characterization and bioactivities of an exopolysaccharide produced by Lactobacillus plantarum YW32. International Journal of Biological Macromolecules, 74, 119–126.

    Google Scholar 

  51. Kim, Y., & Kim, S. H. (2009). Released exopolysaccharide (r-EPS) produced from probiotic bacteria reduce biofilm formation of enterohemorrhagic Escherichia coli O157:H7. Biochemical and Biophysical Research Communications, 379, 324–329.

    Google Scholar 

  52. Casillo, A., Papa, R., Ricciardelli, A., Sannino, F., et al. (2017). Anti-biofilm activity of a long-chain fatty aldehyde from Antarctic Pseudoalteromonas haloplanktis TAC125 against Staphylococcus epidermidis biofilm. Frontiers in Cellular and Infection Microbiology, 7, 46.

    Google Scholar 

  53. Parrilli, E., Papa, R., Carillo, S., Tilotta, M., Casillo, A., et al. (2015). Anti-biofilm activity of pseudoalteromonas haloplanktis tac125 against staphylococcus epidermidis biofilm: evidence of a signal molecule involvement. International Journal of Immunopathology and Pharmacology, 28, 104–113.

    Google Scholar 

  54. Baygar, T., & Ugur, A. (2017). In vitro evaluation of antimicrobial and antibiofilm potentials of silver nanoparticles biosynthesised by Streptomyces griseorubens. IET Nanobiotechnology, 11, 677–681.

    Google Scholar 

  55. Zhang, M., Zhang, K., De Gusseme, B., Verstraete, W., & Field, R. (2014). The antibacterial and anti-biofouling performance of biogenic silver nanoparticles by Lactobacillus fermentum. Biofouling, 30, 347–357.

    Google Scholar 

  56. Du Toit, A. (2014). Bacterial physiology: FtsZ and FtsA find the right place. Nature Reviews. Microbiology, 13, 67.

    Google Scholar 

  57. Sanyasi, S., Majhi, R. K., Kumar, S., Mishra, M., et al. (2016). Polysaccharide-capped silver nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells. Scientific Reports, 6, 24929.

    Google Scholar 

  58. Brudzynski, K., & Sjaarda, C. (2014). Antibacterial compounds of Canadian honeys target bacterial cell wall inducing phenotype changes, growth inhibition and cell lysis that resemble action of β-lactam antibiotics. PLoS One, 9, e106967.

    Google Scholar 

  59. Ansari, M. A., Khan, H. M., Khan, A. A., Cameotra, S. S., & Pal, R. (2014). Antibiofilm efficacy of silver nanoparticles against biofilm of extended spectrum β-lactamase isolates of Escherichia coli and Klebsiella pneumoniae. Applied Nanoscience, 4, 859–868.

    Google Scholar 

  60. Durán, N., Durán, M., de Jesus, M. B., Seabra, A. B., Fávaro, W. J., & Nakazato, G. (2016). Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine Nanotechnology, 12, 789–799.

    Google Scholar 

  61. Bao, H., Yu, X., Xu, C., Li, X., Li, Z., Wei, D., & Liu, Y. (2015). New toxicity mechanism of silver nanoparticles: promoting apoptosis and inhibiting proliferation. PLoS One, 10, e0122535.

    Google Scholar 

  62. Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M., Morelli, G., & Galdiero, M. (2015). Silver nanoparticles as potential antibacterial agents. Molecules, 20, 8856–8874.

    Google Scholar 

  63. Marambio-Jones, C., & Hoek, E. M. (2010). A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 12, 1531–1551.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abir M. H. A. Mohamed.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

None.

Research involving Human and/or Animals

Not involved.

Funding

Non-financial.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, A.M.H.A., Sorokin, V.V., Skladnev, D.A. et al. Biosynthesis of Silver Nanoparticles by Methylophilus quaylei, Characterization and Its Impact on Established Biofilms. BioNanoSci. 10, 885–898 (2020). https://doi.org/10.1007/s12668-020-00780-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-020-00780-8

Keywords

Navigation