Skip to main content
Log in

Green Synthesis of Gold Nanoparticles Obtained from Algae Sargassum cymosum: Optimization, Characterization and Stability

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Gold nanoparticles (Au-NPs) were synthesized by a green synthesis approach using the extract of the algae Sargassum cymosum. The synthesis was carried out with different extracts and tetrachloroauric acid concentrations, temperature, pH, and stirring rate. For all the experiments, the formation of gold nanoparticles was noticed by the color change of the reaction medium after few minutes and by UV-Vis spectrophotometry and dynamic light scattering (DLS) measurements, which confirmed the formation of Au-NPs with an average size mostly between 5 and 22 nm depending on the experimental conditions. The algae extract to metal precursor mass ratio, reaction temperature, as well as the pH have important influence in the yield and stability of the nanoparticles, while the stirring rates tested (300–1000 rpm) did not influence the results to a significant extent. Transmission electron microscopy (TEM) analyses of three samples showed the predominance of nanoparticles with spherical shape and average size between 7 and 20 nm. The storage effect upon the Au-NPs was evaluated by UV-Vis spectrophotometry for a selected number of samples and indicated adequate stability of the materials up to 4 weeks after the synthesis, with the formation of small aggregates. After a storage period of 9 months, it was verified by TEM that six samples remained stable, leveraging possible commercial applications for the Au-NPs produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ahmad, B., Hafeez, N., Bashir, S., Rauf, A., & Rehman, M. (2017). Phytofabricated gold nanoparticles and their biomedical applications. Biomedicine & Pharmacotherapy, 89, 414–425. https://doi.org/10.1016/j.biopha.2017.02.058.

    Article  Google Scholar 

  2. Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: properties, applications and toxicities. Arabian Journal of Chemistry, 12, 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011.

    Article  Google Scholar 

  3. Peng, C.-F., Pan, N., Qian, Z.-J., Wei, X.-L., & Shao, G. (2017). Colorimetric detection of thiocyanate based on inhibiting the catalytic activity of cystine-capped core-shell Au@Pt nanocatalysts. Talanta, 175, 114–120. https://doi.org/10.1016/j.talanta.2017.06.005.

    Article  Google Scholar 

  4. Makarov, V. V., Love, A. J., Sinitsyna, O. V., Makarova, S. S., Yaminsky, I. V., Taliansky, M. E., & Kalinina, N. O. (2014). “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae, 6, 35–44. https://doi.org/10.32607/20758251-2014-6-1-35-44.

    Article  Google Scholar 

  5. Nadagouda, M. N., & Varma, R. S. (2008). Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chemistry, 10, 859–862. https://doi.org/10.1039/B804703K.

    Article  Google Scholar 

  6. Kalimuthu, K., Lubin, B. C., Bazylevich, A., Gellerman, G., Shpilberg, O., Luboshits, G., & Firer, M. A. (2018). Gold nanoparticles stabilize peptide-drug-conjugates for sustained targeted drug delivery to cancer cells. Journal of Nanobiotechnology, 16, 34. https://doi.org/10.1186/s12951-018-0362-1.

    Article  Google Scholar 

  7. Kitching, M., Ramani, M., & Marsili, E. (2015). Fungal biosynthesis of gold nanoparticles: mechanism and scale up. Microbial Biotechnology, 8, 904–917. https://doi.org/10.1111/1751-7915.12151.

    Article  Google Scholar 

  8. Rajeshkumar, S., Malarkodi, C., Gnanajobitha, G., Paulkumar, K., Vanaja, M., Kannan, C., & Annadurai, G. (2013). Seaweed-mediated synthesis of gold nanoparticles using Turbinaria conoides and its characterization. Journal of Nanostructure in Chemistry, 3, 44. https://doi.org/10.1186/2193-8865-3-44.

    Article  Google Scholar 

  9. Herizchi, R., Abbasi, E., Milani, M., & Akbarzadeh, A. (2016). Current methods for synthesis of gold nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology, 44, 596–602. https://doi.org/10.3109/21691401.2014.971807.

    Article  Google Scholar 

  10. Noruzi, M., Zare, D., Khoshnevisan, K., & Davoodi, D. (2011). Rapid green synthesis of gold nanoparticles using Rosa hybrida petal extract at room temperature. Spectrochimica Acta A, 79, 1461–1465. https://doi.org/10.1016/j.saa.2011.05.001.

    Article  Google Scholar 

  11. Namvar, F., Azizi, S., Ahmad, M. B., Shameli, K., Mohamad, R., Mahdavi, M., & Tahir, P. M. (2015). Green synthesis and characterization of gold nanoparticles using the marine macroalgae Sargassum muticum. Research on Chemical Intermediates, 41, 5723–5730. https://doi.org/10.1007/s11164-014-1696-4.

    Article  Google Scholar 

  12. Zhao, X., Li, Z., Deng, Y., Zhao, Z., Li, X., & Xia, Y. (2017). Facile synthesis of gold nanoparticles with alginate and its catalytic activity for reduction of 4-nitrophenol and H2O2 detection. Materials, 10, 557. https://doi.org/10.3390/2Fma10050557.

    Article  Google Scholar 

  13. Sun, L., Li, H., Lv, P., & Chen, J. (2019). Rapid room-temperature synthesis of gold nanoparticles using Sargent gloryvine stem extract and their photocatalytic activity. Journal of Inorganic and Organometallic Polymers and Materials, 29, 269–278. https://doi.org/10.1007/s10904-018-0985-6.

    Article  Google Scholar 

  14. Vijayan, R., Joseph, S., & Mathew, B. (2018). Green synthesis, characterization and applications of noble metal nanoparticles using Myxopyrum serratulum A. W. Hill leaf extract. BioNanoScience, 8, 105–117. https://doi.org/10.1007/s12668-017-0433-z.

    Article  Google Scholar 

  15. Dhas, T. S., Kumar, V. G., Karthick, V., Govindaraju, K., & Shankara Narayana, N. T. (2014). Biosynthesis of gold nanoparticles using Sargassum swartzii and its cytotoxicity effect on HeLa cells. Spectrochimica Acta A, 133, 102–106. https://doi.org/10.1016/j.saa.2014.05.042.

    Article  Google Scholar 

  16. Aragão, A. P., Oliveira, T. M., Quelemes, P. V., Perfeito, M. L. G., Araújo, M. C., Santiago, J. A. S., Cardoso, V. S., Quaresma, P., Leite, J. R. S. A., & Silva, D. A. (2019). Green synthesis of silver nanoparticles using the seaweed Gracilaria birdiae and their antibacterial activity. Arabian Journal of Chemistry, 12, 4182–4188. https://doi.org/10.1016/j.arabjc.2016.04.014.

    Article  Google Scholar 

  17. Link, S., & El-Sayed, M. A. (1999). Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. Journal of Physical Chemistry B, 103, 4212–4217. https://doi.org/10.1021/jp984796o.

    Article  Google Scholar 

  18. Vijayan, S. R., Santhiyagu, P., Singamuthu, M., Kumari Ahila, N., Jayaraman, R., & Ethiraj, K. (2014). Synthesis and characterization of silver and gold nanoparticles using aqueous extract of seaweed, Turbinaria conoides, and their antimicrofouling activity. The Scientific World Journal, 938272. https://doi.org/10.1155/2014/938272.

  19. Marmitt, D. J., Freitas, E. M., Marczinski, F., Flesh, A., & Blasi, E. A. R. (2015). Avaliação quali-quantitativa de algas marinhas macrófitas ocorrentes na Praia da Vigia, Garopaba/SC. Revista CEPSUL - Biodiversidade e Conservação Marinha, 4, 5–15 http://www.icmbio.gov.br/revistaeletronica/index.php/cepsul/article/view/446.

    Google Scholar 

  20. Velgosova, O., & Mrazikova, A. (2017). Green synthesis, long-term stability and toxicity of colloidal Ag nanoparticles. WSEAS Transactions on Biology and Biomedicine, 14, 112–119.

    Google Scholar 

  21. Velgosova, O., & Mrazikova, A. (2017). Limitations and possibilities of green synthesis and long-term stability of colloidal Ag nanoparticles. AIP Conference Proceedings, 1918, 020004/1–020004/7. https://doi.org/10.1063/1.5018499.

    Article  Google Scholar 

  22. Velgosova, O., Cizmarova, E., Malek, J., & Kavulicova, J. (2017). Effect of storage conditions on long-term stability of Ag nanoparticles formed via green synthesis. International Journal of Minerals, Metallurgy and Materials, 24, 1177–1182. https://doi.org/10.1007/s12613-017-1508-0.

    Article  Google Scholar 

  23. Velgosova, O., Mrazikova, A., Cizmarova, E., & Malek, J. (2018). Green synthesis of Ag nanoparticles: effect of algae life cycle on Ag nanoparticle production and long-term stability. The Transactions of Nonferrous Metals Society of China, 28, 974–979. https://doi.org/10.1016/s1003-6326(18)64732-6.

    Article  Google Scholar 

  24. Kumar, P., Selvi, S. S., Prabha, A. L., Kumar, K. P., Ganeshkumar, R. S., & Govindaraju, M. (2012). Synthesis of silver nanoparticles from Sargassum tenerrimum and screening phytochemicals for its antibacterial activity. Nano-Biomedical Engineering, 4, 12–16. https://doi.org/10.5101/nbe.v4i1.p12-16.

    Article  Google Scholar 

  25. Milledge, J. J., & Harvey, P. J. (2016). Potential process ‘hurdles’ in the use of macroalgae as feedstock for biofuel production in the British Isles. Journal of Chemical Technology & Biotechnology, 91, 2221–2234. https://doi.org/10.1002/jctb.5003.

    Article  Google Scholar 

  26. Naveena, B. E., & Prakash, S. (2013). Biological synthesis of gold nanoparticles using marine algae Gracilaria corticata and its application as a potent antimicrobial and antioxidant agent. The Asian Journal of Pharmaceutical and Clinical Research, 6, 179–182.

    Google Scholar 

  27. Souza, F. B. D., Souza, S. M. G. U. D., Souza, A. A. U. D., Costa, C. A., Botelho, C. M., Vilar, V. J., & Boaventura, R. A. (2013). Modeling of trivalent chromium speciation in binding sites of marine macroalgae Sargassum cymosum. Clean Technologies and Environmental Policy, 15, 987–997. https://doi.org/10.1007/s10098-012-0573-3.

    Article  Google Scholar 

  28. Vieira, F. A., Guilherme, R. J., Neves, M. C., Abreu, H., Rodrigues, E. R., Maraschin, M., Coutinho, J. A., & Ventura, S. P. (2017). Single-step extraction of carotenoids from brown macroalgae using non-ionic surfactants. Separation and Purification Technology, 172, 268–276. https://doi.org/10.1016/j.seppur.2016.07.052.

    Article  Google Scholar 

  29. Abdel-Raouf, N., Al-Enazi, N. M., & Ibraheem, I. B. (2017). Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arabian Journal of Chemistry, 10, 3029–3039. https://doi.org/10.1016/j.arabjc.2013.11.044.

    Article  Google Scholar 

  30. Show, K. Y., Lee, D. J., & Mujumdar, A. S. (2015). Advances and challenges on algae harvesting and drying. Dry Technology, 33, 386–394. https://doi.org/10.1080/07373937.2014.948554.

    Article  Google Scholar 

  31. Martinez, J. C., Chequer, N. A., Gonzáles, J. L., & Cordova, T. (2013). Alternative methodology for gold nanoparticles diameter characterization using PCA technique and UV-Vis spectrophotometry. Nanoscience and Nanotechnology, 2, 184–189. https://doi.org/10.5923/j.nn.20120206.06.

    Article  Google Scholar 

  32. Ajdari, Z., Rahman, H., Shameli, K., Abdullah, R., Ghani, M. A., Yeap, S., Abbasiliasi, S., Ajdari, D., & Ariff, A. (2016). Novel gold nanoparticles reduced by Sargassum glaucescens: preparation, characterization and anticancer activity. Molecules, 21, 123. https://doi.org/10.3390/molecules21030123.

    Article  Google Scholar 

  33. Singaravelu, G., Arockiamary, J. S., Kumar, V. G., & Govindaraju, K. (2007). A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids and Surfaces B: Biointerfaces, 57, 97–101. https://doi.org/10.1016/j.colsurfb.2007.01.010.

    Article  Google Scholar 

  34. Sharma, B., Purkayastha, D. D., Hazra, S., Gogoi, L., Bhattacharjee, C. R., Ghosh, N. N., & Rout, J. (2014). Biosynthesis of gold nanoparticles using a freshwater green alga, Prasiola crispa. Material Letters, 116, 94–97. https://doi.org/10.1016/j.matlet.2013.10.107.

    Article  Google Scholar 

  35. Alzoubi, F. Y., Alzouby, J. Y., Alqadi, M. K., Alshboul, H. A., & Aljarrah, K. M. (2015). Synthesis and characterization of colloidal gold nanoparticles controlled by the pH and ionic strength. Chinese Journal of Physics, 53, 1–9. https://doi.org/10.6122/CJP.20150601E.

    Article  Google Scholar 

  36. Haiss, W., Thanh, N. T. K., Aveyard, J., & Fernig, D. G. (2007). Determination of size and concentration of gold nanoparticles from UV-Vis spectra. Analytical Chemistry, 79, 4215–4221. https://doi.org/10.1021/ac0702084.

    Article  Google Scholar 

  37. Mmola, M., Le Roes-Hill, M., Durrell, K., Bolton, J. J., Sibuyi, N., Meyer, M. E., Beukes, D. R., & Antunes, E. (2016). Enhanced antimicrobial and anticancer activity of silver and gold nanoparticles synthesised using Sargassum incisifolium aqueous extracts. Molecules, 21. https://doi.org/10.3390/molecules21121633.

  38. Tran, M., De Penning, R., Turner, M., & Padalkar, S. (2016). Effect of citrate ratio and temperature on gold nanoparticle size and morphology. Materials Research Express, 3, 105027. https://doi.org/10.1088/2053-1591/3/10/105027.

    Article  Google Scholar 

  39. Huang, X., Jain, P. K., El-Sayed, I. H., & El-Sayed, M. A. (2008). Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers in Medical Science, 23, 217–228. https://doi.org/10.1007/s10103-007-0470-x.

    Article  Google Scholar 

  40. Ramakrishna, M., Dandamudi, R. B., Gengan, R., Sundaram, C., & Rao, G. (2015). Green synthesis of gold nanoparticles using marine algae and evaluation of their catalytic activity. Journal of Nanostructure in Chemistry, 6, 1–13. https://doi.org/10.1007/s40097-015-0173-y.

    Article  Google Scholar 

  41. Pinto, V. V., Ferreira, M. J., Silva, R., Santos, H. A., Silva, F., & Pereira, C. M. (2010). Long time effect on the stability of silver nanoparticles in aqueous medium: effect of the synthesis and storage conditions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 364, 19–25. https://doi.org/10.1016/j.colsurfa.2010.04.015.

    Article  Google Scholar 

  42. Colin, J. A., Pech-Pech, I. E., Oviedo, M., Águila, S. A., Romo-Herrera, J. M., & Contreras, O. E. (2018). Gold nanoparticles synthesis assisted by marine algae extract: biomolecules shells from a green chemistry approach. Chemical Physics Letters, 708, 210–215. https://doi.org/10.1016/j.cplett.2018.08.022.

    Article  Google Scholar 

  43. Zabetakis, K., Ghann, W. E., Kumar, S., & Daniel, M. C. (2012). Effect of high gold salt concentrations on the size and polydispersity of gold nanoparticles prepared by an extended Turkevich–Frens method. Gold Bulletin, 45, 203–211. https://doi.org/10.1007/s13404-012-0069-2.

    Article  Google Scholar 

  44. Mountrichas, G., Pispas, S., & Kamitsos, E. I. (2014). Effect of temperature on the direct synthesis of gold nanoparticles mediated by poly(dimethylaminoethyl methacrylate) homopolymer. Journal of Physical Chemistry C, 118, 22754–22759. https://doi.org/10.1021/jp505725v.

    Article  Google Scholar 

  45. Patungwasa, W., & Hodak, J. H. (2008). pH tunable morphology of the gold nanoparticles produced by citrate reduction. Materials Chemistry and Physics, 108, 45–54. https://doi.org/10.1016/j.matchemphys.2007.09.001.

    Article  Google Scholar 

  46. Lee, P. C., & Meisel, D. (1982). Adsorption and surface-enhanced Raman of dyes on silver and gold sols. Journal of Physical Chemistry, 86, 3391–3395. https://doi.org/10.1021/j100214a025.

    Article  Google Scholar 

  47. Rodriguez, G. R. C., Gauthier, G. H., Ladeira, L. O., Sanabria Cala, J. A., & Laverde Catano, D. (2017). Effect of pH and chloroauric acid concentration on the geometry of gold nanoparticles obtained by photochemical synthesis. Journal of Physics: Conference Series, 935(1), 012027. https://doi.org/10.1088/1742-6596/935/1/012027.

    Article  Google Scholar 

  48. Chan, Y. S., & Don, M. M. (2013). Optimization of process variables for the synthesis of silver nanoparticles by Pycnoporus sanguineus using statistical experimental design. Journal of the Korean Society for Applied Biological Chemistry, 56, 11–20. https://doi.org/10.1007/s13765-012-2177-3.

    Article  Google Scholar 

  49. Maestre, I., Bertazzo, M., Maestre-López, I., Payà-Nohales, F., Cuesta-Garrote, N., Arán-Ais, F., Ángel, M. S. S. M., & Orgilés-Barceló, C. (2015). Antimicrobial effect of coated leather based on silver nanoparticles and nanocomposites: synthesis, characterisation and microbiological evaluation. Journal of Biotechnology and Biomaterials, 5, 171. https://doi.org/10.4172/2155-952X.1000171.

    Article  Google Scholar 

  50. Brito-Silva, A. M., Sobral-Filho, R. G., Barbosa-Silva, R., Araújo, C. B., Galembeck, A., & Brolo, A. G. (2013). Improved synthesis of gold and silver nanoshells. Langmuir, 29, 4366–4372. https://doi.org/10.1021/la3050626.

    Article  Google Scholar 

  51. Albernaz, V. L. (2014). Síntese verde de nanopartículas de prata com extrato aquoso de folhas de Brosimum gaudichaudii, caracterização fisicoquímica, morfológica e suas aplicações no desenvolvimento de um nanobiossensor eletroquímico. Master Dissertation. Instituto de Ciências Biológicas. Universidade de Brasília. Brasília.

  52. Chinnappan, R. S., Kandasamy, K., & Sekar, A. (2015). A review on marine based nanoparticles and their potential applications. African Journal of Biotechnology, 14, 1525–1532. https://doi.org/10.5897/AJB2015.14527.

    Article  Google Scholar 

  53. González-Ballesteros, N., Prado-López, S., Rodríguez-González, J. B., Lastra-Valdor, M., & Rodríguez-Argüelles, M. C. (2017). Green synthesis of gold nanoparticles using brown seaweed Cystoseira baccata: its activity in colon cancer cells. Colloids and Surfaces B: Biointerfaces, 153, 190–198. https://doi.org/10.1016/j.colsurfb.2017.02.020.

    Article  Google Scholar 

  54. Gerola, A. P., Wanderlind, E. H., Idrees, M., Sangaletti, P., Zaramello, L., Nome, R. A., Silva, G. T. M., Quina, F. H., Tachiya, M., Nome, F., & Fiedler, H. D. (2020). Anion binding to surfactant aggregates: AuCl4 in cationic, anionic and zwitterionic micelles. Journal of Molecular Liquids, 314, 113607. https://doi.org/10.1016/j.molliq.2020.113607.

    Article  Google Scholar 

  55. Heuer-Jungemann, A., Feliu, N., Bakaimi, I., Hamaly, M., Alkilany, A., Chakraborty, I., Masood, A., Casula, M. F., Kostopoulou, A., Oh, E., Susumu, K., Stewart, M. H., Medintz, I. L., Stratakis, E., Parak, W. J., & Kanaras, A. G. (2019). The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chemical Reviews, 119, 4819–4880. https://doi.org/10.1021/acs.chemrev.8b00733.

    Article  Google Scholar 

  56. Khalid, M. (2020). Nanotechnology and chemical engineering as a tool to bioprocess microalgae for its applications in therapeutics and bioresource management. Critical Reviews in Biotechnology, 40, 46–63. https://doi.org/10.1080/07388551.2019.1680599.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Brazilian institutions UNIVALI, INCT-Catálise (UFSC), LCME-UFSC, CNPq, and FAPESC for their support.

Funding

This study received funding from Fundo de Apoio à Pesquisa–Universidade do Vale do Itajaí (FAP–UNIVALI). CM Radetski received grant from CNPq-Brasil (302124/2019-5). E.H.W received grant from São Paulo Research Foundation (FAPESP, grant #2019/07899-5).

Author information

Authors and Affiliations

Authors

Contributions

L.H. Costa: methodology, investigation; J.V. Hemmer: investigation; E.H. Wanderlind: data curation, reviewing, editing; O.M.S. Gerlach: investigation; A.L.H. Santos: investigation; M.S. Tamanaha: methodology; A. Bella-Cruz: data curation, investigation; R. Corrêa: resources; writing-reviewing; H.A.G. Bazani: investigation; C.M. Radetski: writing-reviewing; G.I. Almerindo: methodology, supervision, data curation, reviewing.

Corresponding authors

Correspondence to C. M. Radetski or G. I. Almerindo.

Ethics declarations

Conflict of Interest

None.

Research Involving Humans and Animals Statement

None.

Informed Consent

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 81 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, L.H., Hemmer, J., Wanderlind, E.H. et al. Green Synthesis of Gold Nanoparticles Obtained from Algae Sargassum cymosum: Optimization, Characterization and Stability. BioNanoSci. 10, 1049–1062 (2020). https://doi.org/10.1007/s12668-020-00776-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-020-00776-4

Keywords

Navigation