Skip to main content
Log in

Fabrication of Cress Seed Gum Nanoparticles, an Anionic Polysaccharide, Using Desolvation Technique: an Optimization Study

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Cress (Lepidium sativum) seed gum was selected as a new source of hydrocolloid to fabricate a novel polysaccharide nanoparticle by desolvation method. Response surface methodology (RSM) was applied to evaluate individual and interactive effects of three main independent factors (gum concentration, amount of acetone, and rate of agitation) on the particle size, zeta potential, and relative viscosity. The central composite design was used for optimization of desolvation process. The results showed that the particle size of cress seed gum nanoparticles (CSGN) was significantly influenced by all three factors, whereas the relative viscosity was only affected by the gum concentration. The optimum conditions for CSGN preparation were determined as follow: 0.28 % w/v gum concentration, 5.12 ml acetone, and rate of agitation of 500 rpm. The CSGN had a spherical shape with average size of 20.10 nm and zeta potential of −32.38 mV as confirmed by DLS method and SEM images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aleboyeh, A., Daneshvar, N., Kasiri, M. B. (2008). Optimization of C.I. Acid Red 14 azo dye removal by electrocoagulation batch process with response surface methodology. Chemical Engineering and Processing, 47, 827–832.

    Article  Google Scholar 

  2. Azimi, B., Nourpanah, P., Rabiee, M., Arbab, S. (2014). Producing gelatin nanoparticles as delivery system for bovine serum albumin. Iranian Biomedical Journal, 18, 34–40.

    Google Scholar 

  3. Bagheri, L., Madadlou, A., Yarmand, M. S., Mousavi, M. E. (2013). Nanoencapsulation of date palm pit extract in whey protein particles generated via desolvation method. Food Research International, 51, 866–871.

    Article  Google Scholar 

  4. Balthasar, S., Michaelis, K., Dinauer, N., Von, B., Kreuter, J., Langer, K. (2005). Preparation and characterization of antibody modified gelatin nanoparticles as drug carrier system for uptake in lymphocytes. Biomaterials, 26, 2723–2732.

    Article  Google Scholar 

  5. Behrouzian, F., Razavi, S. M. A., Karazhiyan, H. (2014). Intrinsic viscosity of cress (Lepidium sativum) seed gum: effect of salts and sugars. Food Hydrocolloids, 25, 100–105.

    Article  Google Scholar 

  6. Behrouzian, F., Razavi, S. M. A., Phillips, G. O. (2014). Cress seed (Lepidium sativum) mucilage, an overview. Bioactive Carbohydrates and Dietary Fiber, 3, 17–28.

    Article  Google Scholar 

  7. Behrouzian, F., Razavi, S. M. A., Karazhiyan, H. (2013). The effect of pH, salts and sugars on the rheological properties of cress seed (Lepidium sativum) gum. International Journal of Food Science & Technology, 48, 2506–2513.

    Article  Google Scholar 

  8. Bootz, A., Vogel, V., Schubert, D., Kreuter, J. (2004). Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly (butyl cyanoacrylate) nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 57, 369–375.

    Article  Google Scholar 

  9. Box, G. E. P., & Draper, N. R. (1982). Measures and lack of fit for response surface designs and predictor variable transformations. Technometrics, 24, 1–8.

    Article  MATH  MathSciNet  Google Scholar 

  10. Chandrasekar, M., Suresh, S., Chandram, B. A. (2010). Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Experimental Thermal and Fluid Science, 34, 210–216.

    Article  Google Scholar 

  11. Chen, H., Ding, Y., Tan, C. (2007). Rheological behaviour of nanofluids. New Journal of Physics, 9, 367.

    Article  Google Scholar 

  12. Cho, H., & Zoh, K. D. (2007). Photocatalytic degradation of azo dye (Reactive RED 120) in TiO2/UV in system: optimization and modeling using a response surface methodology (RSM) based on the central composite design. Dyes and Pigments, 75, 533–543.

    Article  Google Scholar 

  13. Coester, C. J., Langer, K., Von, B., Kreuter, J. (2000). Gelatin nanoparticles by two step desolvation a new preparation method, surface modifications and cell uptake. Journal of Microencapsulate, 17, 187–193.

    Article  Google Scholar 

  14. Douglas, K. L., Piccirillo, C. A., Tabrizian, M. (2006). Effects of alginate inclusion on the vector properties of chitosan-based nanoparticles. Journal of Controlled Release, 115, 354–361.

    Article  Google Scholar 

  15. Fei, Z. J., Zhong, Y. L., Ming, J. N., Ke, F. C. (2009). Dependence of nanofluid viscosity on particle size and pH value. Chinese Physics Letters, 26, 066202.

    Article  Google Scholar 

  16. Gao, S., Sun, J., Fu, D., Zhao, H., Lan, M., Gao, F. (2012). Preparation, characterization and pharmacokinetic studies of tacrolimus-dimethyl-β-cyclodextrin inclusion complex-loaded albumin nanoparticles. International Journal of Pharmaceutics, 427, 410–416.

    Article  Google Scholar 

  17. Gülseren, I., Fang, Y., Corredig, M. (2012). Complexation of high methoxyl pectin with ethanol desolvated whey protein nanoparticles: physico-chemical properties and encapsulation behavior. Food & Function, 3, 859.

    Article  Google Scholar 

  18. Gülseren, I., Fang, Y., Corredig, M. (2012). Zinc incorporation capacity of whey protein nanoparticles prepared with desolvation with ethanol. Food Chemistry, 135, 770–774.

    Article  Google Scholar 

  19. Gülseren, I., Fang, Y., Corredig, M. (2012). Whey protein nanoparticles prepared with desolvation with ethanol: characterization, thermal stability and interfacial behavior. Food Hydrocolloids, 29, 258–264.

    Article  Google Scholar 

  20. He, J., Tremblay, L., Lacellea, S., Zhao, Y. (2011). Preparation of polymer single chain nanoparticles using intramolecular photodimerization of coumarin. A Soft Matter, 7, 2380–2386.

    Article  Google Scholar 

  21. Hosokawa, M., Nogi, K., Naito, M., Yokoyama, T. (2007). Nanoparticle technology handbook (1st ed.). UK: Elsevier. Chapter 1.

    Google Scholar 

  22. Indhuja, A., Suganthi, K. S., Manikandan, S., Rajan, K. S. (2013). Viscosity and thermal conductivity of dispersions of gum arabic capped MWCNT in water: influence of MWCNT concentration and temperature. Journal of the Taiwan Institute of Chemical Engineers, 44, 474–479.

    Article  Google Scholar 

  23. Jahanshahi, M., Najafpour, G., Rahimnejad, M. (2008). Applying the Taguchi method for optimized fabrication of bovine serum albumin (BSA) nanoparticles as drug delivery vehicles. African Journal of Biotechnology, 7, 362–367.

    Google Scholar 

  24. Jahanshahi, M., Sanati, M. H., Minuchehr, Z., Hajizadeh, S., Babaei, Z. (2007). Controlled fabrication of gelatin nanoparticles as drug carriers. AIP Conference Proceedings, 929, 228.

    Article  Google Scholar 

  25. Jahanshahi, M., Rahimnejad, M., Najafpour, G. D. (2006). Production of biological nanoparticles from bovine serum albumin for drug delivery. African Journal of Biotechnology, 5, 1918–1923.

    Google Scholar 

  26. Jun, J. Y., Nguyen, H. H., Paik, S. Y. R., Chun, H. S., Kang, B. C., Ko, S. (2011). Preparation of size-controlled bovine serum albumin (BSA) nanoparticles by a modified desolvation method. Food Chemistry, 127, 1892–1898.

    Article  Google Scholar 

  27. Karazhiyan, H., Razavi, S. M. A., Phillips, G. O. (2011). Physicochemical aspects of hydrocolloid extract from the seeds of Lepidium Sativum. International Journal of Food Science and Technology, 43, 1066–1072.

    Article  Google Scholar 

  28. Karazhiyan, H., Razavi, S. M. A., Phillips, G. O. (2011). Extraction optimization of hydrocolloid extraction from garden seed (Lepidium Sativum) using response surface methodology. Food Hydrocolloids, 25, 915–920.

    Article  Google Scholar 

  29. Karazhiyan, H., Razavi, S. M. A., Phillips, G. O., Fang, Y., Al-Assaf, S., Nishinari, K., et al. (2009). Rheological properties of Lepidium Sativum seed extract as a function of concentration, temperature and time. Food Hydrocolloids, 23, 2062–2068.

    Article  Google Scholar 

  30. Kasiri, M. B., Aleboyeh, H., Aleboyeh, A. (2008). Modeling and optimization of heterogeneous photo-fenton process with response surface methodology and artificial neural networks. Environmental Science & Technology, 42, 7970–7975.

    Article  Google Scholar 

  31. Kiese, S., Papppenberger, A., Friess, W., Mahler, H. C. (2008). Shaken, not stirred: mechanical stress testing of an IgG1 antibody. Journal of Pharmaceutical Sciences, 97, 4347–4366.

    Article  Google Scholar 

  32. Ko, S., & Gunasekaran, S. (2006). Preparation of sub-100-nm b-lactoglobulin (BLG) nanoparticles. Journal of Microencapsulation, 23, 887–898.

    Article  Google Scholar 

  33. Kolluru, L. P., Rizvi, S. A. A., D’Souza, M., D’Souza, J. M. (2013). Formulation development of albumin based theragnostic nanoparticles as a potential delivery system for tumor targeting. Journal of Drug Targeting, 21, 77–86.

    Article  Google Scholar 

  34. Langer, K., Anhorn, M. G., Steinhauser, I., Dreis, S., Celebi, D., Schrickel, N., et al. (2008). Human serum albumin (HSA) nanoparticles: reproducibility of preparation process and kinetics of enzymatic degradation. International Journal of Pharmaceutics, 347, 109–117.

    Article  Google Scholar 

  35. Langer, K., Balthasar, S., Vogel, V., Dinauer, N., Von, B., Schubert, D. (2003). Optimization of the preparation process for human serum albumin (HSA) nanoparticles. International Journal of Pharmaceutics, 257, 169–180.

    Article  Google Scholar 

  36. Langer, K., Coester, C., Weber, C., Von, B., Kreuter, J. (2000). Preparation of avidin-labeled protein nanoparticles as carriers for biotinylated peptide nucleic acid. European Journal of Pharmaceutics and Biopharmaceutics, 49, 300–307.

    Article  Google Scholar 

  37. Lee, H. G., Park, H. H., Kim, J. A., Park, J. H., Ryu, J., Choi, J., et al. (2014). Enzyme delivery using the 30Kc19 protein and human serum albumin nanoparticles. Biomaterials, 35, 1696–1704.

    Article  Google Scholar 

  38. Li, C., Zhang, D., Guo, H., Hao, L., Zheng, D., Liu, G., et al. (2013). Preparation and characterization of galactosylated bovine serum albumin nanoparticles for liver-targeted delivery of oridonin. International Journal of Pharmaceutics, 448, 79–86.

    Article  Google Scholar 

  39. Li, F. E., Su, H., Wang, J., Liu, J. Y., Zhu, Q. G., Fei, Y. B., et al. (2008). Preparation and characterization of sodium ferulate entrapped bovine serum albumin nanoparticles for liver targeting. International Journal of Pharmaceutics, 349, 274–282.

    Article  Google Scholar 

  40. Liu, H. L., & Chiou, Y. R. (2005). Optimal decolorization efficiency of reactive red 239 by UV/TiO2 photocatalytic process coupled with response surface methodology. Chemical Engineering Journal, 112, 173–179.

    Article  Google Scholar 

  41. Lin, W., Coombes, A. G. A., Davies, M. C., Davis, S. S., Ilium, L. (1993). Preparation of Sub-l00 nm human serum albumin nanospheres using a pH-coacervation method. Journal of Drug Targeting, 1, 237–243.

    Article  Google Scholar 

  42. Moghimi, S. M., Hunter, A. C., Murray, J. C. (2001). Long-circulating and target specific nanoparticles: theory to practice. Pharmacological Reviews, 58, 283–318.

    Google Scholar 

  43. Murshed, S. M. S., Leong, K. C., Yang, C. (2008). Investigations of thermal conductivity and viscosity of nanofluids. International Journal of Thermal Sciences, 47, 560–568.

    Article  Google Scholar 

  44. Myers, R. H., & Montgomery, D. (2002). Response surface methodology: process and product optimization using designed experiments (1st ed.). New York: Wiley. Chapter2.

    Google Scholar 

  45. Naidu, B. V. K., & Paulson, A. T. (2011). A new method for the preparation of gelatin nanoparticles: encapsulation and drug release characteristics. Journal of Applied Polymer Science, 121, 3495–3500.

    Article  Google Scholar 

  46. Naji, S., & Razavi, S. M. A. (2014). Functional and textural characteristics of cress seed (Lepidium sativum) gum and xanthan gum: effect of refrigeration condition. Food Bioscience, 5, 1–8.

    Article  Google Scholar 

  47. Naji, S., Razavi, S. M. A., Karazhiyan, H. (2013). Effect of freezing on functional and textural attributes of cress seed gum and xanthan gum. Food and Bioprocess Technology, 6(5), 1302–1311.

    Article  Google Scholar 

  48. Naji, S., Razavi, S. M. A., Karazhiyan, H., Koocheki, A. (2012). Influence of thermal treatments on textural characteristics of cress seed (Lepidium sativum) gum gel. Electronic Journal of Environmental, Agricultural and Food Chemistry, 11, 222–237.

    Google Scholar 

  49. Naji, S., Razavi, S. M. A., Karazhiyan, H. (2012). Effect of thermal treatments on functional properties of cress seed (Lepidium sativum) and xanthan gums: a comparative study. Food Hydrocolloids, 28, 75–81.

    Article  Google Scholar 

  50. Nwosu, P. N., Meyer, J., Sharifpur, M. (2014). Nanofluid viscosity: a simple model selection algorithm and parametric evaluation. Computers & Fluids, 101, 241–249.

    Article  Google Scholar 

  51. Paik, S. Y. R., Nguyen, H. H., Ryu, J., Che, J. H., Kang, T. S., Lee, J. K., et al. (2013). Robust size control of bovine serum albumin (BSA) nanoparticles by intermittent addition of a desolvating agent and the particle formation mechanism. Food Chemistry, 141, 695–701.

    Article  Google Scholar 

  52. Pan, X., Yu, S., Yao, P., Shao, Z. (2007). Self-assembly of β-casein and lysozyme. Journal of Colloid and Interface Science, 316, 405–412.

    Article  Google Scholar 

  53. Priya, K. R., Suganthi, K. S., Rajan, K. S. (2012). Transport properties of ultra-low concentration CuO water nanofluids containing non-spherical nanoparticles. International Journal of Heat and Mass Transfer, 55, 4734–4743.

    Article  Google Scholar 

  54. Rahimnejad, M., Najafpour, G. H., Bakeri, G. H. (2012). Investigation and modeling effective parameters influencing the size of BSA protein nanoparticles as colloidal carrier. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 412, 96–100.

    Article  Google Scholar 

  55. Ramachandran, R., & Shanmughavel, P. (2010). Preparation and characterization of biopolymeric nanoparticles used in drug delivery. Indian Journal Biochemistry & Biophysics, 47, 56–59.

    Google Scholar 

  56. Ramteke, S., & Jain, N. K. (2008). Clarithromycin- and omeprazole-containing gliadin nanoparticles for the treatment of Helicobacter pylori. Journal of Drug Targeting, Informa Healthcare, 16, 65–72.

    Article  Google Scholar 

  57. Rajam, M., Pulavendran, S., Rose, C., Mandal, A. B. (2011). Chitosan nanoparticles as a dual growth factor delivery system for tissue engineering applications. International Journal of Pharmaceutics, 410, 145–152.

    Article  Google Scholar 

  58. Razavi, S. M. A., Bostan, A., Niknia, S., Razmkhah, S. (2011). Functional properties of hydrocolloid extracted from selected domestic Iranian seeds (in Persian). Journal of Food Science Research, 21(3), 380–389.

    Google Scholar 

  59. Reis, C. P., Ribeiro, A. J., Houng, S., Veiga, F., Neufeld, R. J. (2007). Nanoparticulate delivery system for insulin: design, characterization and in vitro/in vivo bioactivity. European Journal of Pharmaceutical Sciences, 30, 392–397.

    Article  Google Scholar 

  60. Saraogi, G. K., Gupta, P., Gupta, U. D., Jain, N. K., Agrawal, G. P. (2010). Gelatin nanocarriers as potential vectors for effective management of tuberculosis. International Journal of Pharmaceutics, 385, 143–149.

    Article  Google Scholar 

  61. Sarmento, B., Ribeiro, A. J., Veiga, F., Ferreira, D. C., Neufeld, R. J. (2007). Insulin-loaded nanoparticles are prepared by alginate ionotropic pre-gelation followed by chitosan polyelectrolyte complexation. Journal of Nanoscience and Nanotechnology, 7, 2833–2841.

    Article  Google Scholar 

  62. Shelton, J. T., Khuri, A. I., Cornell, J. A. (1983). Selecting check points for testing lack of fit in response surface models. Technometrics, 25, 357–365.

    Article  MATH  Google Scholar 

  63. Soppimath, K. S., Aminabhavi, T. M., Kulkarni, A. R., Rudzinski, W. E. (2001). Biodegradable polymeric nanoparticles as drug delivery devices. Journal of Controlled Release, 70, 1–20.

    Article  Google Scholar 

  64. Storp, B. V., Engel, A., Boeker, A., Ploeger, M., Langer, K. (2012). Albumin nanoparticles with predictable size by desolvation procedure. Journal of Microencapsulation, 29(2), 138–146.

    Article  Google Scholar 

  65. Suganthi, K. S., & Rajan, K. S. (2012). Temperature induced changes in ZnO–water nanofluid: zeta potential, size distribution and viscosity profiles. International Journal of Heat and Mass Transfer, 55, 7969–7980.

    Article  Google Scholar 

  66. Teng, Z., Luo, Y., Wang, Q. (2012). Nanoparticles synthesized from soy protein: preparation, characterization, and application for nutraceutical encapsulation. Journal of Agricultural and Food Chemistry, 60, 2712–2720.

    Article  Google Scholar 

  67. Taheri Qazvini, N., & Zinatloo, S. (2011). Synthesis and characterization of gelatin nanoparticles using CDI/NHS as a non-toxic cross-linking system. Journal of Materials Science: Materials in Medicine, 22, 63–69.

    Google Scholar 

  68. Tseng, W. J., & Lin, K. C. (2003). Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions. Materials Science and Engineering A, 355, 186–192.

    Article  Google Scholar 

  69. Umamaheshwari, R. B., & Jain, N. K. (2003). Receptor mediated targeting of lectin conjugated gliadin nanoparticles in the treatment of Helicobacter pylori. Journal of Drug Targeting, Informa Healthcare, 11, 415–424.

    Article  Google Scholar 

  70. Wacker, M., Zensi, A., Kufleitner, J., Ruff, A., Schutz, J., Stockburger, T., et al. (2011). A toolbox for the upscaling of ethanolic human serum albumin (HSA) desolvation. International Journal of Pharmaceutics, 414, 225–232.

    Article  Google Scholar 

  71. Wang, J., Wu, W., Zhang, Y., Wang, X., Qian, H., Liu, B., et al. (2014). The combined effects of size and surface chemistry on the accumulation of boronic acid-rich protein nanoparticles in tumors. Biomaterials, 35, 866–878.

    Article  Google Scholar 

  72. Wang, W., Huang, Y., Zhao, S., Shao, T., Cheng, Y. (2013). Human serum albumin (HSA) nanoparticles stabilized with intermolecular disulfide bonds. Chemical Communications, 49, 2234–2236.

    Article  Google Scholar 

  73. Weber, C., Coester, C., Kreuter, J., Langer, K. (2000). Desolvation process and surface characterisation of protein nanoparticles. International Journal of Pharmaceutics, 194, 91–102.

    Article  Google Scholar 

  74. Yang, S. G., Chang, J. E., Shin, B., Park, S., Na, K., Shim, C. K. (2010). 99mTc-hematoporphyrin linked albumin nanoparticles for lung cancer targeted photodynamic therapy and imaging. Journal of Materials Chemistry, 20, 9042–9046.

    Article  Google Scholar 

  75. You, J. O., & Peng, C. A. (2005). Calcium-alginate nanoparticles formed by reverse microemulsion as gene carriers. Macromolecular Symposia, 219, 147–153.

    Article  Google Scholar 

  76. Zarei, M., Niaei, A., Salari, D., Khataee, A. R. (2010). Application of response surface methodology for optimization of peroxi-coagulation of textile dye solution using carbon nanotube-PTFE cathode. Journal of Hazardous Materials, 173, 544–551.

    Article  Google Scholar 

  77. Zhang, Y., Yue, X., Kim, B., Yao, S., Bondar, V. M., Belfield, D. K. (2013). Bovine serum albumin nanoparticles with fluorogenic Near-IR-Emitting squaraine dyes. ACS Applied Materials & Interfaces, 5, 8710–8717.

    Article  Google Scholar 

  78. Zhao, D., Zhao, X., Zu, Y., Li, J., Zhang, Y., Jiang, R., et al. (2010). Preparation, characterization, and in vitro targeted delivery of folate-decorated paclitaxel-loaded bovine serum albumin nanoparticles. International Journal of Nanomedicine, 5, 669–677.

    Google Scholar 

  79. Zu, Y., Zhang, Y., Zhao, X., Zhang, Q., Liu, Y., Jiang, R. (2009). Optimization of the preparation process of vinblastine sulfate (VBLS)-loaded folate conjugated bovine serum albumin (BSA) nanoparticles for tumor-targeted drug delivery using response surface methodology (RSM). International Journal of Nanomedicine, 4, 321–333.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed M. A. Razavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taheri, A., Razavi, S.M.A. Fabrication of Cress Seed Gum Nanoparticles, an Anionic Polysaccharide, Using Desolvation Technique: an Optimization Study. BioNanoSci. 5, 104–116 (2015). https://doi.org/10.1007/s12668-015-0169-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-015-0169-6

Keywords

Navigation