Skip to main content
Log in

Dry Sliding and Abrasive Wear Behavior of Nanostructure Zr–W–N Coating

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Zirconium tungsten nitride (Zr–W–N) coating has been deposited on 304 SS substrates by pulse DC magnetron sputtering. The average micro hardness and roughness of Zr–W–N coating were obtained as ~1,963 HV and ~13 nm respectively. The dry sliding and abrasive wear tests of coated samples were performed in open atmosphere at various loads (15–45 N) with constant speed (0.1 m/s) up to maximum life of a coating. The coefficient of friction (COF) and cumulative weight loss were measured as a function of distance travelled by the coating. The change (minimum to maximum) in COF of the coated samples at various loads was obtained as ~0.15–0.68 and ~0.20–0.27 for dry sliding wear and abrasive wear tests respectively. The cumulative weight loss of the coated samples at various loads was calculated as 1 × 10−6–6 × 10−6 g/m for dry sliding wear and 6 × 10−6–26 × 10−6 g/m for abrasive wear test. Finally, coatings were compared on COF and cumulative weight loss as a function of sliding distance with SS substrate at 15 N load with 0.1 m/s speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kimura A, and Suzuki T, J Vac Sci Technol A 18 (2000) 1038.

    Article  Google Scholar 

  2. Tang Z Z, Ceram Int 38 (2012) 2997.

    Article  Google Scholar 

  3. Gu B, Tu J P, Zheng X H, Yang Y Z, and Peng S M, Surf Coat Technol 202 (2008) 2189.

    Article  Google Scholar 

  4. Yang B, Chen L, Chang K K, Wei P, Peng Y B, Yong D, and Yong L, Int J Refract Met Hard Mater 35 (2012) 235.

    Article  Google Scholar 

  5. Klostermann H, Fietzke F, Modes T, and Zywitzki O, Rev Adv Mater Sci 15 (2007) 33.

    Google Scholar 

  6. Sun X, Reid J S, Kolawa E, and Nicolet M A, J Appl Phys 81 (1997) 656.

    Article  Google Scholar 

  7. Soderberg J, Oden M, Aldareguia J M M, and Hultman L, J Appl Phys 97 (2005) 114327.

    Article  Google Scholar 

  8. Kim S H, Kim J K, and Kim K H, Thin Solid Films 420–421 (2002) 360.

    Article  Google Scholar 

  9. Chawla V, Jayaganthan R, and Chandra R, Surf Coat Technol 204 (2010) 1582.

    Article  Google Scholar 

  10. Musil J, Daniel R, Zeman P, and Takai O, Thin Solid Films 478 (2005) 238.

    Article  Google Scholar 

  11. Marques A P, and Cavaleiro A, Thin Solid Films 441 (2003) 150.

    Article  Google Scholar 

  12. Wiedemann R, Weihnacht V, and Oettel H, Surf Coat Technol 116–119 (1999) 302.

    Article  Google Scholar 

  13. Holleck H, J Vac Sci Technol A 4 (1986) 2661.

    Article  Google Scholar 

  14. Zhao L R, Chen K, Yang Q, Rodgers J R, and Chiou S H, Surf Coat Technol 200 (2005) 1595.

    Article  Google Scholar 

  15. Yamamot K, and Fox-Rabinovich, G, Hard films and sputtering targets for the deposition thereof, united states patent, US 7648781 B2, (2010).

  16. Song D H, Yang G S, and Lee J K, Solid State Phenom 124–126 (2007) 1513.

    Article  Google Scholar 

  17. Hsu C H, Lin C K, Huang K H, and Ou K L, Surf Coat Technol 31 (2013) 380.

    Article  Google Scholar 

  18. Moser J H, Tian F, Haller O, Bergstrom D B, Petrov I, Greene J E, and Wiemer C, Thin Solid Films 253 (1994) 445.

    Article  Google Scholar 

  19. Yang Q, and Zhao L R, Surf Coat Technol 200 (2005) 1709.

    Article  Google Scholar 

  20. Regent F, and Musil J, Surf Coat Technol 142–144 (2001) 146.

    Article  Google Scholar 

  21. Kim G-S, Kim Y-S, Kim S-M, Lee S-Y, Lee K-R, J Korean Phys Soc 54 (2009) 1569.

    Article  Google Scholar 

  22. Purushotham K P, Ward L P, Brack N, Pigram P J, Evans P, Noorman H, and Manory R R, J Vac Sci Technol A 25 (2007) 110.

    Article  Google Scholar 

  23. Ryan N E, J Less-Common Met 6 (1964) 21.

    Article  Google Scholar 

  24. Schwarz K, Yee D S, Cuomo J J, and Harper J M E, Phys Rev B 32 (1985) 8.

    Google Scholar 

  25. Dubey P, Arya V, Srivastava S, Singh D, and Chandra R, Surf Coat Technol 236 (2013) 182.

    Article  Google Scholar 

  26. Pei Y, Deng J, Wu Z, Li S, Xing Y, and Zhao J, Int J Refract Met Hard Mater 35 (2012) 213.

    Article  Google Scholar 

  27. Zhang G P, Niu E W, Wang X Q, Lv G H, Zhou L, Pang H, Huang J, Chen W, and Yang S Z, Appl Surf Sci 258 (2012) 3674.

    Article  Google Scholar 

  28. Silva P N, Dias J P, and Cavaleir A, Surf Coat Technol 200 (2005) 186.

    Article  Google Scholar 

  29. Nossa A, and Cavaleir A, Surf Coat Technol 142–144 (2001) 984.

    Article  Google Scholar 

  30. Hutchings I M, Tribology: friction and wear of engineering materials, Publisher by Edward Arnold, 1996, chaps 3, 5 and 6.

Download references

Acknowledgments

V. C. would like to acknowledge MHRD for financial support. This work has been supported by grant received under NPP scheme of CPRI, Bangalore, India via letter No. CPRI/CCAR/NPP/IITR/2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Dubey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, V., Dubey, P., Verma, S. et al. Dry Sliding and Abrasive Wear Behavior of Nanostructure Zr–W–N Coating. Trans Indian Inst Met 68, 799–807 (2015). https://doi.org/10.1007/s12666-015-0513-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-015-0513-0

Keywords

Navigation