Skip to main content
Log in

Production and Characterization of PANI/TiO2 Nanocomposites: Anticorrosive Application on 316LN SS

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Conductive polyaniline/titanium dioxide (PANI/TiO2) nanocomposites with different weight ratios were synthesized using in situ chemical oxidative polymerization. PANI/TiO2 was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, thermogravimetric analysis and electrical conductivity. Room temperature conductivities of PANI, PANI/TiO2 (I), PANI/TiO2 (II), and PANI/TiO2 (III) are 9.77 × 10−4, 1.89 × 10−5, 2.01 × 10−5 and 2.87 × 10−5 S/cm respectively, show decrease of conductivity with increase of TiO2 content in the nanocomposite due to the hindrance of carrier transport between different conjugated chains of PANI in composite. The IR measurement indicates that there is strong interaction between the PANI and TiO2 nanoparticles showing beneficial effect on the thermal stability of PANI/TiO2 nanocomposite. Corrosion inhibition study shows that 316LN stainless steel coated with PANI/TiO2 nanocomposite with weight ratio 0.05 shows better corrosion inhibition effect than pure PANI and nano-TiO2 coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. MacDiarmid A G, Chiang J C, and Richter A F, Synth Met 18 (1987) 285.

    Article  CAS  Google Scholar 

  2. Bakhshi A K, and Bhalla G, J Sci Ind Res 63 (2004) 715.

    CAS  Google Scholar 

  3. Epstein A J, Joo J, Wu C Y, Benatar A, Faisst C F, Zegarski J, and MacDiarmid A G, in Intrinsically Conducting Polymer. An Emerging Technology, (ed) Aldissi M, Kluwer, Netherland (1993).

  4. Angelopoulos M, IBM J RES & DEV 45 (2001) 57.

    Article  CAS  Google Scholar 

  5. Spinks G M, Dominis A J, Wallace G G, and Tallman D E, J Solid State Electrochem 6 (2002) 85.

    Article  CAS  Google Scholar 

  6. Trivedi D C, in Handbook of Organic Conductive Molecules and Polymers, (ed) Nalwa H S, Wiley, New York (1997).

  7. Kang E T, Neoh K G, and Tan K L, Prog Polym Sci 23 (1898) 277.

    Article  Google Scholar 

  8. Gupta M C, and Umare S S, Macromolecules 25 (1992) 138.

    Article  CAS  Google Scholar 

  9. Khanna P K, Kulkarni M V, Singh N, Lonkar S P, Subharao V V V V S, and Visvanath A K, Mater Chem Phys 95 (2006) 24.

    Article  CAS  Google Scholar 

  10. Zeng H U, Curr Opi Chem Eng 1 (2011) 11.

    Article  CAS  Google Scholar 

  11. Diebold U, Appl Phys A76 (2002) 1.

    Google Scholar 

  12. Golubovic A, Scepanovic M, Kremenovic A, Askrabic S, Berec V, Dohcevic-Mitrovic Z, and Popovic Z V, J Sol Gel Sci Technol 49 (2009) 311.

    Article  CAS  Google Scholar 

  13. Pawar S G, Patil S L, Choughule M A, Raut B T, Jundale D M, and Patil V B, Arch Appl Sci Res 2 (2010) 194.

    CAS  Google Scholar 

  14. Lal R, Rathore B, and Gaur M S, Ionics 18 (2012) 565.

    Article  CAS  Google Scholar 

  15. Gao J, Li S, Yang W, Ni G, and Bo L, J Mater Sci 42 (2007) 3190.

    Article  CAS  Google Scholar 

  16. Lee I S, Lee J Y, Sung J H, and Choi H J, Synth Met 152 (2005) 173.

    Article  CAS  Google Scholar 

  17. Han Y G, Kusunose T, and Sekino T, J Ceram Proc Res 10 (2009) 208.

    Google Scholar 

  18. Su S, and Kuramoto N, Synth Met 114 (2000) 147.

    Article  CAS  Google Scholar 

  19. Li X, Chen W, Bian C, He J, Xu N, and Xue G, Appl Surf Sci 217 (2003) 16.

    Article  CAS  Google Scholar 

  20. Bitao S U, Shixiong M I N, Shixiong S H E, Yongchun T O N G, and Jie B A I, Frontier Chem China 2 (2007) 123.

  21. Zhang L, Liu P, and Su Z, Poly Degrad Stab 91 (2006) 2213.

    Article  CAS  Google Scholar 

  22. Nabid M R, Golbabaee M, Moghaddam A B, Dinarvand R, and Sedghi R, Int J Electrochem Sci 3 (2008) 1117.

    CAS  Google Scholar 

  23. Jumali M H H, Izzuddin I, Ramli N, Salleh M M, and Yahaya M, Solid State Sci Technol 17 (2009) 126.

    CAS  Google Scholar 

  24. Sathiyanarayanan S, Syed A S, and Venkatachari G, Electrochimica Acta 52 (2007) 2068.

    Article  CAS  Google Scholar 

  25. Rathod R C, Didolkar V K, Umare S S, and Shambharkar B H, Trans Indian Inst Met 64 (2011) 431.

    Article  CAS  Google Scholar 

  26. Shambharkar B H, and Umare S S, Mater Sci Engg B 175 (2010) 120.

    Article  CAS  Google Scholar 

  27. Nicula R, Stir M, Schick C, and Burkel E, Thermochimica Acta 403 (2003) 129.

    Article  CAS  Google Scholar 

  28. Cullity B D, in Elements of X-Ray Diffraction, 2nd edition, Addison-Wesley, California (1978).

    Google Scholar 

  29. Sato K, Li J G, Kamiya H, and Ishigaki T, J Am Ceram Soc 91 (2008) 2481.

    Article  CAS  Google Scholar 

  30. Somani P R, Marimuthu R, Mulik U P, Sainkar S R, and Amalnerkar D P, Synth Met 106 (1999) 45.

    Article  CAS  Google Scholar 

  31. Singh K, Ohlan A, Bakhshi A K, and Dhawan S K, Mater Chem Phys 119 (2010) 201.

    Article  CAS  Google Scholar 

  32. Bhadra J, and Sarkar D, Mater Lett 63 (2009) 69.

    Article  CAS  Google Scholar 

  33. Reddy K R, Lee K P, and Gopalan A I, Colloid Surf A 320 (2008) 49.

    Article  Google Scholar 

  34. Zhang X, Yan G, Ding H, and Shan Y, Mater Chem Phys 102 (2007) 249.

    Article  CAS  Google Scholar 

  35. Liu P, Synth Met 159 (2009) 148.

    Article  Google Scholar 

  36. Wang S X, Sun L X, Tan Z C, Xu F, and Li Y S, J Therm Anal Calorim 89 (2007) 609.

    Article  CAS  Google Scholar 

  37. Santos J R, Mattoso L H C, and Motheo A J, Electrochemica Acta 43 (1998) 309.

    Article  CAS  Google Scholar 

  38. Shan C X, Hou X, and Choy K L, Surf Coat Technol 202 (2008) 2399.

    Article  CAS  Google Scholar 

  39. Shen G X, Chen Y C, Lin L, and Scantlebury D, Electrochimica Acta 50 (2005) 5083.

    Article  CAS  Google Scholar 

  40. Tait W S, in An Introduction to Electrochemical Corrosion Testing for Practicing Engineers and Scientists, Pair O Docs Publication, Racine (1994).

    Google Scholar 

  41. Radhakrishnan S, Siju C R, Mahanta D, Patil S, and Madras G, Electrochim Acta 54 (2009) 1249.

    Article  CAS  Google Scholar 

  42. Mahulikar P P, Jadhav R S, and Hundiwale D G, Iran Polym J 20 (2011) 367.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the help extended by Gauri Deshmukh, a PhD research scholar at the Department of Metallurgical and Materials Engineering, VNIT Nagpur in carrying out TGA measurement of our samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Umare.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rathod, R.C., Umare, S.S., Didolkar, V.K. et al. Production and Characterization of PANI/TiO2 Nanocomposites: Anticorrosive Application on 316LN SS. Trans Indian Inst Met 66, 97–104 (2013). https://doi.org/10.1007/s12666-012-0231-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-012-0231-9

Keywords

Navigation